-
fx_cs
buck电路的matlab仿真,单环控制(matlab simulink of buck circuit)
- 2012-05-01 13:48:46下载
- 积分:1
-
MATLAB_Financial_Toolbox
Matlab Financial Toolbox
- 2009-01-26 11:30:34下载
- 积分:1
-
outliers
用于数据处理过程中,删除噪声和异常数据,提高数据均值特性(For data processing, remove the noise and abnormal data, improve data mean characteristics)
- 2014-12-10 17:20:32下载
- 积分:1
-
CreateColorCheckerChart
Script to make (synthesize) a perfect X-Rite Color Checker Chart from the X-Rite supplied sRGB values.(This chart has been known in the past as the Gretag Macbeth ColorChecker Chart,
and the Munsell ColorChecker Chart.)
- 2013-04-15 20:20:55下载
- 积分:1
-
polyfit-nihe
运用最小二乘法进行风电功率拟合,再使用它进行预测,含数据和实际案例(Using the least squares method to fit wind power, and then use it to predict, including data and actual cases)
- 2014-01-14 22:41:38下载
- 积分:1
-
m
说明: 基于MATLAB图像处理的应用及参考代码(MATLAB-based image processing applications and reference code)
- 2009-03-22 11:44:26下载
- 积分:1
-
容错控制
容错控制,控制律,扰动观测器,滑模控制。(fault tolerant control)
- 2019-05-06 11:18:38下载
- 积分:1
-
63523
THIS IS GOOD MATLAB ARTICLE ABOUT FACE DETECTION
- 2010-05-25 21:31:07下载
- 积分:1
-
SoC_and_SoH_Development_for_EV
采用matlab建立电池模型,实现电池管理系统SOC和SOH估算功能(Using matlab to create a battery model, battery management system, SOC and SOH estimation function)
- 2012-11-25 18:33:35下载
- 积分:1
-
MyKmeans
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
- 2005-07-26 01:32:58下载
- 积分:1