登录
首页 » matlab » HMM_matlab

HMM_matlab

于 2020-12-10 发布 文件大小:2983KB
0 259
下载积分: 1 下载次数: 40

代码说明:

  这是基于隐马尔可夫模型的连续语音识别代码,不同于dtw,这是个完整的工程,我把需要的voicebox也放进去了,一共用到9个子函数,包括模板的训练算法何识别算法,是完全可以使用的。(This is based on the hidden Markov model of continuous voice recognition code, different the dtw, which is a complete project, I need to put the voicebox into a total of nine sub-functions, including the template training algorithm to identify the algorithm, Is fully available.)

文件列表:

HMM_matlab
..........\0a.wav,29096,2001-10-21
..........\0b.wav,29640,2001-10-21
..........\1a.wav,33832,2001-10-21
..........\1b.wav,31800,2001-10-21
..........\2a.wav,32840,2001-10-21
..........\2b.wav,37224,2001-10-21
..........\3a.wav,38472,2001-10-21
..........\3b.wav,32664,2001-10-21
..........\4a.wav,37144,2001-10-21
..........\4b.wav,38264,2001-10-21
..........\5a.wav,34408,2001-10-21
..........\5b.wav,37144,2001-10-21
..........\6a.wav,36552,2001-10-21
..........\6b.wav,35624,2001-10-21
..........\7a.wav,36280,2001-10-21
..........\7b.wav,33576,2001-10-21
..........\8a.wav,21624,2001-10-21
..........\8b.wav,21608,2001-10-21
..........\9a.wav,25192,2001-10-21
..........\9b.wav,27192,2001-10-21
..........\baum.m,1919,2017-04-25
..........\getparam.m,2281,2017-04-25
..........\hmm.mat,63856,2001-11-12
..........\inithmm.m,1594,2017-04-25
..........\kmeans.m,2001,2017-04-25
..........\main.m,483,2017-04-25
..........\mcut.fig,18312,2001-10-21
..........\MCUT.m,3763,2001-10-21
..........\mfcc.m,1100,2017-04-25
..........\mixture.m,411,2017-04-25
..........\MKEY.M,2412,2001-10-21
..........\MMOUSE.M,2403,2001-10-21
..........\pdf.m,230,2001-11-10
..........\readwave.m,355,2001-10-21
..........\recog.m,300,2017-04-25
..........\samples.mat,630000,2001-11-12
..........\train.m,1005,2017-04-25
..........\UNTITLED.FIG,16552,2001-10-20
..........\UNTITLED.M,4841,2001-10-20
..........\vad.m,1896,2017-04-25
..........\viterbi.m,1053,2017-04-25
..........\voicebox
..........\........\activlev.m,16679,2017-04-14
..........\........\activlevg.m,8389,2017-04-14
..........\........\atan2sc.m,1793,2017-04-14
..........\........\axisenlarge.m,2112,2017-04-14
..........\........\bark2frq.m,4728,2017-04-14
..........\........\berk2prob.m,1705,2017-04-14
..........\........\bitsprec.m,3305,2017-04-14
..........\........\cblabel.m,2469,2017-04-14
..........\........\ccwarpf.m,2013,2017-04-14
..........\........\cent2frq.m,2046,2017-04-14
..........\........\cep2pow.m,2131,2017-04-14
..........\........\choosenk.m,2239,2017-04-14
..........\........\choosrnk.m,1603,2017-04-14
..........\........\Contents.m,14643,2017-04-14
..........\........\correlogram.m,3975,2017-04-14
..........\........\distchar.m,3819,2017-04-14
..........\........\distchpf.m,3422,2017-04-14
..........\........\disteusq.m,3688,2017-04-14
..........\........\distisar.m,4641,2017-04-14
..........\........\distispf.m,3736,2017-04-14
..........\........\distitar.m,4170,2017-04-14
..........\........\distitpf.m,3601,2017-04-14
..........\........\ditherq.m,1982,2017-04-14
..........\........\dlyapsq.m,2756,2017-04-14
..........\........\dualdiag.m,3479,2017-04-14
..........\........\dypsa.m,26494,2017-04-14
..........\........\enframe.m,6637,2017-04-14
..........\........\entropy.m,3906,2017-04-14
..........\........\erb2frq.m,3430,2017-04-14
..........\........\estnoiseg.m,7306,2017-04-14
..........\........\estnoisem.m,16236,2017-04-14
..........\........\ewgrpdel.m,2461,2017-04-14
..........\........\fig2emf.m,4127,2017-04-14
..........\........\figbolden.m,4593,2017-04-14
..........\........\filtbankm.m,15242,2017-04-14
..........\........\filterbank.m,3507,2017-04-14
..........\........\finishat.m,4876,2017-04-14
..........\........\flac.exe,262144,2017-04-14
..........\........\fopenmkd.m,2254,2017-04-14
..........\........\frac2bin.m,2483,2017-04-14
..........\........\fram2wav.m,5259,2017-04-14
..........\........\frq2bark.m,6116,2017-04-14
..........\........\frq2cent.m,2072,2017-04-14
..........\........\frq2erb.m,3305,2017-04-14
..........\........\frq2mel.m,2796,2017-04-14
..........\........\frq2midi.m,2082,2017-04-14
..........\........\fxpefac.m,16582,2017-04-14
..........\........\fxrapt.m,17319,2017-04-14
..........\........\gammabank.m,9992,2017-04-14
..........\........\gausprod.m,6728,2017-04-14
..........\........\gaussmix.m,25016,2017-04-14
..........\........\gaussmixd.m,8199,2017-04-14
..........\........\gaussmixg.m,17585,2017-04-14
..........\........\gaussmixk.m,6625,2017-04-14
..........\........\gaussmixm.m,6481,2017-04-14
..........\........\gaussmixp.m,11941,2017-04-14
..........\........\gaussmixt.m,11418,2017-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PersonalRecord
    非常实用的java小实例,个人录音,实现了很简单的小功能,对于我们初学者很有帮助哦,拿来分享给大家。(Very practical examples of java small, personal recording, to achieve a very simple little feature, very helpful for us beginners Oh, bring to others.)
    2011-12-06 10:21:11下载
    积分:1
  • MELPcodepaper
    目前2.4kbps的混合激励线性预测 (MELP) 语音编码方法已经被确定为美国新的联邦语音编码标准.本文提出了一种改进的MELP语音编码方法,利用滤波器相似度和基于LPC系数分类的矢量量化技术,可以把MELP的码率降到1.7kbps以下,仍有较好的合成语音质量.(An Improved MELP Speech Coder)
    2016-12-20 09:38:31下载
    积分:1
  • speech processing
    中国科学技术大学本科课程语音信号处理实验代码(speech processing code for USTCers)
    2020-11-11 10:59:44下载
    积分:1
  • PsychoacousticModel
    matlab代码,语音的压缩和编码,主要利用了心理声学模型,得到低比特编码 和高质量语音(matlab code, voice compression and coding, psychoacoustic model used by low-bit encoding and high-quality voice)
    2009-07-12 21:39:58下载
    积分:1
  • 最终代码说话人
    实现了基于特定话语的聚类LGB和VQ的说话人识别(Speaker Recognition Based on Clustering LGB and VQ)
    2019-05-20 15:04:44下载
    积分:1
  • dtw_revised
    利用DTW模版匹配算法实现0~9十个数字的识别。(use DTW template matching algorithm 0-9 10-digit identification.)
    2007-06-11 16:51:28下载
    积分:1
  • LPCC
    线性预测倒谱系数(Linear Prediction Cepstrum Coefficient,LPCC)是线性预测系数(Linear Prediction Coefficient,LPC)在倒谱域中的表示。该特征是基于语音信号为自回归信号的值设,利用线性预测分析获得倒谱系数。(Linear Prediction Cepstrum Coefficient)
    2018-04-18 16:27:27下载
    积分:1
  • hmm
    hmm文件时运用HMM算法实现噪声环境下语音识别的。其中vad.m是端点检测程序;mfcc.m是计算MFCC参数的程序;pdf.m函数是计算给定观察向量对该高斯概率密度函数的输出概率;mixture.m是计算观察向量对于某个HMM状态的输出概率,也就是观察向量对该状态的若干高斯混合元的输出概率的线性组合;getparam.m函数是计算前向概率、后向概率、标定系数等参数;viterbi.m是实现Viterbi算法;baum.m是实现Baum-Welch算法;inithmm.m是初始化参数;train.m是训练程序;main.m是训练程序的脚本文件;recog.m是识别程序。(hmm HMM algorithm file using speech recognition in noisy environments. Which is the endpoint detection process vad.m mfcc.m procedure is to calculate the MFCC parameters pdf.m function is calculated for a given observation vector of the Gaussian probability density function of output probability mixture.m is to calculate the observation vector for a HMM state output probability of observation vector is the number of Gaussian mixture per state output probability of the linear combination getparam.m before the calculation of the probability function, backward probability, calibration coefficients and other parameters viterbi.m is Viterbi algorithm implementation baum.m Baum-Welch algorithm to achieve inithmm.m is the initialization parameters train.m is the training program main.m training program is a script file recog.m is to identify procedures.)
    2010-09-16 20:51:49下载
    积分:1
  • Speech_Quallity_Estimate
    压缩包中包括3个用于对语音增强中,增强语音质量测试的程序:分段信噪比提高测量、对数谱距离测量、信噪比测量。具体说明,请看文件文件说明。(Compression package, including three for speech enhancement, the enhanced voice quality testing procedures: Sub-noise ratio improve measurement of the distance spectrum measurement, signal to noise ratio measurement. Specify, see the paper documentation.)
    2020-10-31 06:59:55下载
    积分:1
  • AEC
    基于LMS算法和NLMS算法的自适应声回波消除器AEC,实现的主要功能是:在用户对电视发出的指令混杂了电视扬声器的声学回声的情况下,滤掉电视声音得到较为纯净的用户语音指令信号。(The main function of the adaptive filter based on the LMS algorithm and the NLMS algorithm is mixed: in the instruction issued by the user on the television TV speakers acoustic echo case, the TV sound was removed by filtration to obtain relatively pure user voice command signal.)
    2012-10-29 16:49:47下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载