登录
首页 » matlab » PSO_topology

PSO_topology

于 2020-11-20 发布 文件大小:9973KB
0 282
下载积分: 1 下载次数: 84

代码说明:

  各种不同拓扑结构下的PSO算法的Matlab源代码,包括全局拓扑,环形拓扑,冯诺依曼拓扑、多种群、四聚类等等(Different topology structure of PSO algorithm of Matlab source code, including global topology, ring topology, von neumann topology, multiple species, four clustering and so on)

文件列表:

PSO_topology - 副本
...................\1999 Small Worlds and Mega-Minds Effects of Neighborhood Topology on Particle Swarm Performance.pdf,665435,2011-12-19
...................\2002 Population Structure and Particle Swarm Performance.pdf,137656,2012-09-02
...................\2004 The Fully Informed Particle Swarm Simpler, Maybe Better.pdf,255127,2012-03-02
...................\2013 Small-world particle swarm optimization with topology adaptation.pdf,1110958,2015-02-26
...................\2014 Investigating the use of alternative topologies on performance of the PSO-ELM.pdf,1177576,2015-02-24
...................\benchmark for CEC 2005
...................\......................\2005 Benchmark Functions for the CEC 2005 on Real-Parameter Optimization .pdf,656819,2014-03-25
...................\......................\ackley_func_data.mat,984,2014-02-24
...................\......................\ackley_M_D10.mat,984,2014-02-24
...................\......................\ackley_M_D2.mat,216,2014-02-24
...................\......................\ackley_M_D30.mat,7384,2014-02-24
...................\......................\ackley_M_D50.mat,20184,2014-02-24
...................\......................\benchmark_func.m,28221,2014-02-25
...................\......................\CEC2005.xlsx,11020,2015-02-15
...................\......................\Contour1.m,879,2015-01-25
...................\......................\EF8F2_func_data.mat,984,2014-02-24
...................\......................\elliptic_M_D10.mat,984,2014-02-24
...................\......................\elliptic_M_D2.mat,216,2014-02-24
...................\......................\elliptic_M_D30.mat,7384,2014-02-24
...................\......................\elliptic_M_D50.mat,20184,2014-02-24
...................\......................\E_ScafferF6_func_data.mat,984,2014-02-24
...................\......................\E_ScafferF6_M_D10.mat,984,2014-02-24
...................\......................\E_ScafferF6_M_D2.mat,216,2014-02-24
...................\......................\E_ScafferF6_M_D30.mat,7384,2014-02-24
...................\......................\E_ScafferF6_M_D50.mat,20184,2014-02-24
...................\......................\fbias_data.mat,248,2014-02-24
...................\......................\func_plot.m,1767,2014-11-15
...................\......................\global_optima.mat,20184,2014-02-24
...................\......................\griewank_func_data.mat,984,2014-02-24
...................\......................\griewank_M_D10.mat,984,2014-02-24
...................\......................\griewank_M_D2.mat,216,2014-02-24
...................\......................\griewank_M_D30.mat,7384,2014-02-24
...................\......................\griewank_M_D50.mat,20184,2014-02-24
...................\......................\high_cond_elliptic_rot_data.mat,984,2014-02-24
...................\......................\hybrid_func1_data.mat,8184,2014-02-24
...................\......................\hybrid_func1_M_D10.mat,8792,2014-02-24
...................\......................\hybrid_func1_M_D2.mat,7592,2014-02-24
...................\......................\hybrid_func1_M_D30.mat,72792,2014-02-24
...................\......................\hybrid_func1_M_D50.mat,200792,2014-02-24
...................\......................\hybrid_func2_data.mat,8184,2014-02-24
...................\......................\hybrid_func2_M_D10.mat,8792,2014-02-24
...................\......................\hybrid_func2_M_D2.mat,1112,2014-02-24
...................\......................\hybrid_func2_M_D30.mat,72792,2014-02-24
...................\......................\hybrid_func2_M_D50.mat,200792,2014-02-24
...................\......................\hybrid_func3_data.mat,8184,2014-02-24
...................\......................\hybrid_func3_HM_D10.mat,8792,2014-02-24
...................\......................\hybrid_func3_HM_D2.mat,1112,2014-02-24
...................\......................\hybrid_func3_HM_D30.mat,72792,2014-02-24
...................\......................\hybrid_func3_HM_D50.mat,200792,2014-02-24
...................\......................\hybrid_func3_M_D10.mat,8792,2014-02-24
...................\......................\hybrid_func3_M_D2.mat,1112,2014-02-24
...................\......................\hybrid_func3_M_D30.mat,72792,2014-02-24
...................\......................\hybrid_func3_M_D50.mat,200792,2014-02-24
...................\......................\hybrid_func4_data.mat,8184,2014-02-24
...................\......................\hybrid_func4_M_D10.mat,8792,2014-02-24
...................\......................\hybrid_func4_M_D2.mat,1112,2014-02-24
...................\......................\hybrid_func4_M_D30.mat,72792,2014-02-24
...................\......................\hybrid_func4_M_D50.mat,200792,2014-02-24
...................\......................\problem_range.m,2100,2014-02-24
...................\......................\rastrigin_func_data.mat,984,2014-02-24
...................\......................\rastrigin_M_D10.mat,984,2014-02-24
...................\......................\rastrigin_M_D2.mat,216,2014-02-24
...................\......................\rastrigin_M_D30.mat,7384,2014-02-24
...................\......................\rastrigin_M_D50.mat,20184,2014-02-24
...................\......................\README.txt,5470,2014-02-24
...................\......................\rosenbrock_func_data.mat,984,2014-02-24
...................\......................\schwefel_102_data.mat,984,2014-02-24
...................\......................\schwefel_206_data.mat,21040,2014-02-24
...................\......................\schwefel_213_data.mat,41104,2014-02-24
...................\......................\sphere_func_data.mat,984,2014-02-24
...................\......................\test_data.mat,104928,2014-02-24
...................\......................\weierstrass_data.mat,984,2014-02-24
...................\......................\weierstrass_M_D10.mat,984,2014-02-24
...................\......................\weierstrass_M_D2.mat,216,2014-02-24
...................\......................\weierstrass_M_D30.mat,7384,2014-02-24
...................\......................\weierstrass_M_D50.mat,20184,2014-02-24
...................\benchmark_YaoXin
...................\................\1996 Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions.pdf,1578674,2015-03-11
...................\................\1999 Evolutionary programming made faster.pdf,666184,2014-11-20
...................\................\2011 DE.BBO a hybrid differential evolution with biogeography-based optimization for global numerical optimization.pdf,877058,2015-01-07
...................\................\benchmark_YaoXin.m,8115,2015-03-08
...................\................\benchmark_YaoXin.xlsx,12106,2015-03-08
...................\................\Contour1.m,880,2015-01-28
...................\................\func_plot.m,1290,2015-01-28
...................\................\New Folder
...................\................\..........\f.m,52,2015-04-08
...................\................\..........\test2.m,50,2015-04-08
...................\................\..........\Untitled.m,168,2015-04-08
...................\................\problem_maxFES.m,1975,2015-03-08
...................\................\problem_range.m,3055,2015-01-07
...................\................\测试函数.pdf,1202246,2014-11-16
...................\Network-Structured Particle Swarm Optimizer with Small-World Topology.pdf,257979,2015-02-26
...................\PSO_Clan_global
...................\...............\2009 Clan particle swarm optimization.pdf,386275,2015-02-24
...................\...............\boundConstraint_absorb.m,526,2014-04-11
...................\...............\boundConstraint_random.m,503,2014-04-11
...................\...............\boundConstraint_reflect.m,407,2014-02-25
...................\...............\CFPSO_Clan_global.m,5057,2015-04-09
...................\...............\CFPSO_Clan_global_cec2005.m,5169,2015-04-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • vehicleguidance
    Vehicle guidance for obstacle avoidance.Path planning for vehicle guidance
    2009-11-03 14:24:46下载
    积分:1
  • lle
    局部线性嵌入法,用于数据降维 .lle.m -- A simple matlab routine to perform LLE. .scurve.m -- Code to run the "s-curve" example. .swissroll.m -- Code to run the "swiss roll" example. (Locally Linear Embedding method for data dimensionality reduction. Lle.m- A simple matlab routine to perform LLE.. Scurve.m- Code to run the s-curve example.. Swissroll.m- Code to run the swiss roll example.)
    2008-06-12 13:06:31下载
    积分:1
  • LWPR-PLS
    局部加权映射回归算法的数值算例例程,帮助了解lwpr算法(algorithm for lwpr)
    2015-12-14 20:43:03下载
    积分:1
  • KSVD
    说明:  ksvd字典学习,KSVD算法程序,完成KSVD重构字典的程序(Ksvd dictionary learning KSVD algorithm program to complete the dictionary KSVD reconstruction program)
    2019-11-20 21:05:24下载
    积分:1
  • model11
    for face detection using web cam
    2010-11-02 12:48:20下载
    积分:1
  • fuzzer_PID
    说明:  基于MATLAB编程模糊控制PID源程序(PID fuzzy control based on MATLAB programming source code)
    2010-04-12 22:55:35下载
    积分:1
  • ARsuanfa
    这是关于程控方面的一些东西,里面主要供运营商里面的学生学习(This is about SPC some things, it mainly for operators to the inside of the students learning )
    2013-01-07 15:21:09下载
    积分:1
  • chapter02
    the scatering algorithm
    2012-04-13 04:54:03下载
    积分:1
  • integration-of-digital-signals
    The following attachment contains codes in Matlab for digital signal processing. In the file code is for the integration of digital signals
    2015-03-03 11:05:41下载
    积分:1
  • SVM
    In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is introduced by using the SVM. The kernel mapping idea is used to derive the non-linear version, Kernel Discriminant via Support Vectors (SVKD). In SVDA, only support vectors are involved to obtain the transformation matrix. Thus, the computational complexity can be greatly reduced for kernel based feature extraction. Experiments carried out on several standard databases show a clear improvement on LDA-based recognition
    2010-02-20 01:10:17下载
    积分:1
  • 696516资源总数
  • 106461会员总数
  • 1今日下载