登录
首页 » matlab » ChaosToolbox2p9

ChaosToolbox2p9

于 2017-06-14 发布 文件大小:344KB
0 192
下载积分: 1 下载次数: 7

代码说明:

  对一些常用的混沌系统进行计算,包括指数谱,分叉图等(Some common chaotic systems are calculated, including exponential spectrum, bifurcation diagram and so on)

文件列表:

ChaosToolbox2p9_trial\install.m
ChaosToolbox2p9_trial\工具箱说明.txt
ChaosToolbox2p9_trial\BoxDimension_2D\BoxDimension_2D.p
ChaosToolbox2p9_trial\BoxDimension_2D\Contents.m
ChaosToolbox2p9_trial\BoxDimension_2D\dla.gif
ChaosToolbox2p9_trial\BoxDimension_2D\Main_BoxDimension_2D.m
ChaosToolbox2p9_trial\BoxDimension_2D
ChaosToolbox2p9_trial\BoxDimension_TS\BoxDimension_TS.p
ChaosToolbox2p9_trial\BoxDimension_TS\Contents.m
ChaosToolbox2p9_trial\BoxDimension_TS\Main_BoxDimension_TS.m
ChaosToolbox2p9_trial\BoxDimension_TS\wfbm.p
ChaosToolbox2p9_trial\BoxDimension_TS
ChaosToolbox2p9_trial\C-C Method\CC_luzhenbo.mexw32
ChaosToolbox2p9_trial\C-C Method\Contents.m
ChaosToolbox2p9_trial\C-C Method\LorenzData.mexw32
ChaosToolbox2p9_trial\C-C Method\Main_CC_Method_Luzhenbo.m
ChaosToolbox2p9_trial\C-C Method
ChaosToolbox2p9_trial\ChaosAttractors\ChensData.mexw32
ChaosToolbox2p9_trial\ChaosAttractors\Contents.m
ChaosToolbox2p9_trial\ChaosAttractors\createmgdde23.m
ChaosToolbox2p9_trial\ChaosAttractors\DuffingData.mexw32
ChaosToolbox2p9_trial\ChaosAttractors\DuffingData2.mexw32
ChaosToolbox2p9_trial\ChaosAttractors\LorenzData.mexw32
ChaosToolbox2p9_trial\ChaosAttractors\Main_Chens.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Duffing.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Duffing2.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Henon.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Ikeda.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Logistic.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Lorenz.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_MackeyGLass.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Quadratic.m
ChaosToolbox2p9_trial\ChaosAttractors\Main_Rossler.m
ChaosToolbox2p9_trial\ChaosAttractors\RosslerData.mexw32
ChaosToolbox2p9_trial\ChaosAttractors
ChaosToolbox2p9_trial\CorrelationDimension_GP\Contents.m
ChaosToolbox2p9_trial\CorrelationDimension_GP\CorrelationIntegral.mexw32
ChaosToolbox2p9_trial\CorrelationDimension_GP\LM1.p
ChaosToolbox2p9_trial\CorrelationDimension_GP\LorenzData.mexw32
ChaosToolbox2p9_trial\CorrelationDimension_GP\Main_CorrelationDimension_GP.m
ChaosToolbox2p9_trial\CorrelationDimension_GP\PhaSpaRecon.p
ChaosToolbox2p9_trial\CorrelationDimension_GP
ChaosToolbox2p9_trial\DelayTime_MutualInformation\Contents.m
ChaosToolbox2p9_trial\DelayTime_MutualInformation\LorenzData.mexw32
ChaosToolbox2p9_trial\DelayTime_MutualInformation\Main_Mutual_Information.m
ChaosToolbox2p9_trial\DelayTime_MutualInformation\Amutual_lzb.mexw32
ChaosToolbox2p9_trial\DelayTime_MutualInformation
ChaosToolbox2p9_trial\DelayTime_Others\AutoCorrelation.p
ChaosToolbox2p9_trial\DelayTime_Others\AverageDisplacement.p
ChaosToolbox2p9_trial\DelayTime_Others\ComplexAutoCorrelation.p
ChaosToolbox2p9_trial\DelayTime_Others\Contents.m
ChaosToolbox2p9_trial\DelayTime_Others\LorenzData.mexw32
ChaosToolbox2p9_trial\DelayTime_Others\Main_AutoCorrelation.m
ChaosToolbox2p9_trial\DelayTime_Others\Main_AverageDisplacement.m
ChaosToolbox2p9_trial\DelayTime_Others\Main_ComplexAutoCorrelation.m
ChaosToolbox2p9_trial\DelayTime_Others\PhaSpaRecon.p
ChaosToolbox2p9_trial\DelayTime_Others
ChaosToolbox2p9_trial\EmbeddingDimension_Cao\cao_buffer.mexw32
ChaosToolbox2p9_trial\EmbeddingDimension_Cao\Contents.m
ChaosToolbox2p9_trial\EmbeddingDimension_Cao\LorenzData.mexw32
ChaosToolbox2p9_trial\EmbeddingDimension_Cao\cao_luzhenbo.mexw32
ChaosToolbox2p9_trial\EmbeddingDimension_Cao\Main_EmbeddingDimension_Cao.m
ChaosToolbox2p9_trial\EmbeddingDimension_Cao
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\Contents.m
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\LorenzData.mexw32
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\Main_EmbeddingDimension_FNN.m
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\PhaSpaRecon.p
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\SearchNN2.p
ChaosToolbox2p9_trial\EmbeddingDimension_FNN\FNN.p
ChaosToolbox2p9_trial\EmbeddingDimension_FNN
ChaosToolbox2p9_trial\GeneralizedDimension_2D\Contents.m
ChaosToolbox2p9_trial\GeneralizedDimension_2D\dla.gif
ChaosToolbox2p9_trial\GeneralizedDimension_2D\GeneralizedDimension_2D.p
ChaosToolbox2p9_trial\GeneralizedDimension_2D\Main_GeneralizedDimension_2D.m
ChaosToolbox2p9_trial\GeneralizedDimension_2D
ChaosToolbox2p9_trial\GeneralizedDimension_TS\Contents.m
ChaosToolbox2p9_trial\GeneralizedDimension_TS\GeneralizedDimension_TS.p
ChaosToolbox2p9_trial\GeneralizedDimension_TS\Main_GeneralizedDimension_TS.m
ChaosToolbox2p9_trial\GeneralizedDimension_TS\wfbm.p
ChaosToolbox2p9_trial\GeneralizedDimension_TS
ChaosToolbox2p9_trial\KolmogorovEntropy_GP\Contents.m
ChaosToolbox2p9_trial\KolmogorovEntropy_GP\CorrelationIntegral.mexw32
ChaosToolbox2p9_trial\KolmogorovEntropy_GP\LM2.p
ChaosToolbox2p9_trial\KolmogorovEntropy_GP\LorenzData.mexw32
ChaosToolbox2p9_trial\KolmogorovEntropy_GP\Main_KolmogorovEntropy_GP.m
ChaosToolbox2p9_trial\KolmogorovEntropy_GP
ChaosToolbox2p9_trial\KolmogorovEntropy_STB\Contents.m
ChaosToolbox2p9_trial\KolmogorovEntropy_STB\KolmogorovEntropy.mexw32
ChaosToolbox2p9_trial\KolmogorovEntropy_STB\LorenzData.mexw32
ChaosToolbox2p9_trial\KolmogorovEntropy_STB\Main_KolmogorovEntropy_STB.m
ChaosToolbox2p9_trial\KolmogorovEntropy_STB
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\Contents.m
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\LorenzData.mexw32
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein1.m
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein2.m
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\PhaSpaRecon.p
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\SearchNN2.p
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\Lyapunov_rosenstein_2.p
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein3.m
ChaosToolbox2p9_trial\LargestLyapunov_Rosenstein

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • kmeans1
    利用改进k-means算法对客户进行分类,改进rfm模型(Using improved k-means algorithm to classify customers and improve RFM model)
    2018-12-25 15:44:39下载
    积分:1
  • 蒙特卡罗晶粒生长代码 MC-Simulation
    该代码为蒙特卡罗晶粒生长代码,对初学者十分有用。(Monte Carlo Simulation Q-state Potts model 2D square-lattice- microstructure)
    2017-05-08 09:17:21下载
    积分:1
  • C3控制器开发包
    中控sdk,内含push sdk,还有C#的源码(zkt-sdk SDK, containing push SDK, as well as C# source code)
    2021-04-19 11:08:51下载
    积分:1
  • rovio-master(imu和单目的数据融合)
    说明:  高精度预测机器人运动轨迹,惯性导航与光学定位组合方法定位(High precision prediction robot trajectory, inertial navigation and optical positioning combined method positioning)
    2020-06-18 04:20:02下载
    积分:1
  • PhysiologicalSignalSimulation
    说明:  对生理信号:呼吸和心跳的仿真,信号模型见附件论文(For physiological signals: simulation of respiration and heartbeat signals, the signal models can be seen in attached paper.)
    2020-04-22 06:48:57下载
    积分:1
  • FastTraceDesign
    说明:  INS解算与反解算,根据一段航迹生成所需要的传感器数据(INS solve and generation)
    2020-10-15 18:23:44下载
    积分:1
  • webrtc aec matlab
    说明:  webrtc aec回声消除仿真 包换aec里面的四大模块 仿真效果很好(Webrtc AEC echo cancellation simulation package replaces four modules in AEC with good simulation results)
    2019-03-16 17:15:00下载
    积分:1
  • 小波
    说明:  小波分解变换,时频分析,可用于信号处理,信号特征提取(Wavelet decomposition transformation, time-frequency analysis, can be used for signal processing, signal feature extraction)
    2020-09-18 15:30:43下载
    积分:1
  • Pairs of a given algebra system <G,*>, where G = (1,2, ..., n),* operator...
    对给出的一个代数系统〈G,*〉,其中G={1,2,…,n},*运算由运算表矩阵给出,要判断: 〈G,*〉是否为半群; 〈G,*〉是否含有幺元; -Pairs of a given algebra system , where G = (1,2, ..., n),* operator matrix is given by the operation table, it is necessary to determine
    2022-07-06 21:53:59下载
    积分:1
  • 本程序是用纯API函数写得一个小的贪食蛇游戏,可供初学者学习用...
    本程序是用纯API函数写得一个小的贪食蛇游戏,可供初学者学习用-this program is written in pure API function of a small Tanshichi game for beginners to learn from
    2023-05-10 08:45:03下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载