登录
首页 » matlab » chks光滑支持向量机-程序

chks光滑支持向量机-程序

于 2020-12-25 发布 文件大小:23227KB
0 400
下载积分: 1 下载次数: 14

代码说明:

  CHKS光滑孪生支持向量机程序, 采用CHKS光滑函数逼近无约束孪生支持向量机的不可微部分,得到一类光滑的孪生支持向量机。(CHKS smooth twin support vector machine program)

文件列表:

chks光滑孪生支持向量机\banana\banana.mat, 14933, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_1.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_10.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_100.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_11.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_12.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_13.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_14.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_15.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_16.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_17.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_18.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_19.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_2.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_20.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_21.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_22.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_23.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_24.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_25.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_26.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_27.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_28.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_29.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_3.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_30.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_31.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_32.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_33.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_34.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_35.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_36.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_37.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_38.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_39.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_4.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_40.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_41.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_42.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_43.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_44.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_45.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_46.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_47.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_48.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_49.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_5.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_50.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_51.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_52.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_53.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_54.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_55.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_56.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_57.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_58.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_59.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_6.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_60.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_61.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_62.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_63.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_64.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_65.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_66.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_67.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_68.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_69.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_7.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_70.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_71.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_72.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_73.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_74.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_75.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_76.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_77.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_78.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_79.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_8.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_80.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_81.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_82.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_83.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_84.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_85.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_86.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_87.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_88.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_89.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_9.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_90.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_91.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_92.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_93.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_94.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_95.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_96.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_97.asc, 161700, 2015-01-08
chks光滑孪生支持向量机\banana\banana_test_data_98.asc, 161700, 2015-01-08

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • k-means java实现 Iris四大
    通过优化的k-means算法 采用了密度和优化评测函数实现了对Iris等数据集的聚类。 
    2022-03-18 06:28:52下载
    积分:1
  • speech noise reduction
    使用python实现谱减法对语音的降噪功能,代码包括语音的读取、降噪、输出保存(Spectral subtraction speech noise reduction python code)
    2018-06-27 17:22:04下载
    积分:1
  • LZYSAD
    雷达数据处理的重要模型算法之一,该代码对imm算法的不同参数下进行了详细的仿真,(One of the important model algorithms for radar data processing, the code simulates the IMM algorithm in detail under different parameters.)
    2018-09-06 13:02:17下载
    积分:1
  • 0262842
    請用星號( )排列出下列的 p箭 星號 D案,輸入 Y料 ne txt中的第一行為箭 的上下高度(必為奇數),第二行為 D案的總寬度()
    2018-05-28 18:54:24下载
    积分:1
  • 粗糙集
    说明:  粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • 用python 做的网络爬虫
    说明:  用python 做的网络数据爬虫,爬取淘宝数据,并分析。(Use Python to do the network data crawler, crawl the Taobao data, and analyze.)
    2020-02-25 18:34:31下载
    积分:1
  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • PCA
    一个用python实现的PCA算法,并且给了简易素材(A PCA algorithm implemented in python, and gave a simple material)
    2020-08-23 14:38:17下载
    积分:1
  • ga-svm
    用遗传算法优化支持向量回归机C、g、p参数(Optimization of C, G, P parameters of support vector regression machine by genetic algorithm)
    2018-01-12 19:32:12下载
    积分:1
  • sklearn-tree-BN-knn
    分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载