-
dian7
校园二手交易系统,具有完备的后台操作以及应用功能!(campus secondary trading systems, has a sound background and the application of functional operation!)
- 2006-07-02 01:23:45下载
- 积分:1
-
bayes分类器,本程序根据病人症状可初步诊断疾病
bayes分类器,本程序根据病人症状可初步诊断疾病-Bayes classifier, this procedure can be based on the patient"s symptoms preliminary diagnosis of diseases
- 2022-04-17 22:14:55下载
- 积分:1
-
AHP+TOPSIS
层次分析法和逼近理想法结合从而选取最优网络(Analytic Hierarchy Process and Approximation Ideal Method to Select Optimal Network)
- 2021-01-14 20:08:46下载
- 积分:1
-
Python_GUI_Game
A game made with Python
- 2018-11-27 13:13:43下载
- 积分:1
-
三级联动代码
说明: 手机端城市三级联动代码是一款带有手机验证码和表单验证的手机端代码(Mobile City Level 3 Linkage Code is a mobile code with mobile phone verification code and form verification.)
- 2019-03-19 17:04:25下载
- 积分:1
-
VC++扩展型CListCtrl列表控件
VC++扩展型CListCtrl列表控件,支持双击鼠标实现编辑主项(Item),也可以编辑子项(SubItem),并尽量符合CListCtrl的操作习惯,目前好像很多控件都有这功能的,应该加入这个实用的功能。
- 2022-07-28 13:07:49下载
- 积分:1
-
leVHDL2
digital gates and coding
- 2019-04-11 05:05:21下载
- 积分:1
-
爬取热门微博评论并进行数据分析、nlp情感分析
爬取热门微博评论并进行数据分析、nlp情感分析
xuenlp.py功能包含:
读取数据库并进行数据去重
对微博评论进行情感分析并生成统计结果
统计微博评论中的表情排行
统计微博评论中的粉丝排行前20(Crawl popular microblog comments and do data analysis and NLP sentiment analysis
Xuenlp.py functions include:
Read the database and de-duplicate the data
Emotional analysis of microblog comments and generating statistical results
Statistical expression ranking in microblog comments
Statistics of the top 20 fans in microblog comments)
- 2020-06-23 05:20:02下载
- 积分:1
-
C++源代码垃圾 垃圾 垃圾 垃圾 垃圾 垃圾
C++源代码垃圾 垃圾 垃圾 垃圾 垃圾 垃圾 -C source code garbage litter gar bage litter gar bage litter gar bage litter gar bage litter gar bage litter
- 2022-04-09 11:46:26下载
- 积分:1
-
Unet-master2
CN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。(CN classifies images at the pixel level, thus resolving the problem of semantic segmentation at the semantic level. Unlike classical CNN, which uses full-connection layer to get fixed-length feature vectors after convolution layer for classification (full-connection layer + soft Max output), FCN can accept any size of input image, and uses deconvolution layer to sample feature map of the last convolution layer to restore it to the same size of input image, so that each pixel can be generated. At the same time, the spatial information of the original input image is retained. Finally, the pixel-by-pixel classification is carried out on the feature map sampled above.)
- 2019-04-19 19:16:29下载
- 积分:1