登录
首页 » matlab » PCA-SVM-master

PCA-SVM-master

于 2017-11-30 发布 文件大小:3109KB
0 161
下载积分: 1 下载次数: 93

代码说明:

  PCA/SVM算法实现图像分类,分类准确率可到达90%(Image classification by PCA/SVM algorithm)

文件列表:

PCA-SVM-master
PCA-SVM-master\.gitignore, 5, 2017-07-01
PCA-SVM-master\README.md, 123, 2017-07-01
PCA-SVM-master\main.m, 2730, 2017-07-01
PCA-SVM-master\multiSVM.m, 525, 2017-07-01
PCA-SVM-master\multiSVMtrain.m, 606, 2017-07-01
PCA-SVM-master\test.m, 1917, 2017-07-01
PCA-SVM-master\test
PCA-SVM-master\test\0 (1).png, 44077, 2017-07-01
PCA-SVM-master\test\0 (2).png, 72411, 2017-07-01
PCA-SVM-master\test\0 (3).png, 38049, 2017-07-01
PCA-SVM-master\test\0 (4).png, 35242, 2017-07-01
PCA-SVM-master\test\0 (5).png, 30781, 2017-07-01
PCA-SVM-master\test\1 (1).png, 156468, 2017-07-01
PCA-SVM-master\test\1 (2).png, 62669, 2017-07-01
PCA-SVM-master\test\1 (3).png, 107671, 2017-07-01
PCA-SVM-master\test\1 (4).png, 80643, 2017-07-01
PCA-SVM-master\test\1 (5).png, 55553, 2017-07-01
PCA-SVM-master\test\2 (1).png, 55868, 2017-07-01
PCA-SVM-master\test\2 (2).png, 38445, 2017-07-01
PCA-SVM-master\test\2 (3).png, 29013, 2017-07-01
PCA-SVM-master\test\2 (4).png, 23713, 2017-07-01
PCA-SVM-master\test\2 (5).png, 22353, 2017-07-01
PCA-SVM-master\train
PCA-SVM-master\train\0 (1).png, 44077, 2017-07-01
PCA-SVM-master\train\0 (10).png, 27757, 2017-07-01
PCA-SVM-master\train\0 (11).png, 56032, 2017-07-01
PCA-SVM-master\train\0 (12).png, 96927, 2017-07-01
PCA-SVM-master\train\0 (13).png, 77765, 2017-07-01
PCA-SVM-master\train\0 (14).png, 42728, 2017-07-01
PCA-SVM-master\train\0 (15).png, 67671, 2017-07-01
PCA-SVM-master\train\0 (2).png, 72411, 2017-07-01
PCA-SVM-master\train\0 (3).png, 38049, 2017-07-01
PCA-SVM-master\train\0 (4).png, 35242, 2017-07-01
PCA-SVM-master\train\0 (5).png, 30781, 2017-07-01
PCA-SVM-master\train\0 (6).png, 86893, 2017-07-01
PCA-SVM-master\train\0 (7).png, 56500, 2017-07-01
PCA-SVM-master\train\0 (8).png, 20189, 2017-07-01
PCA-SVM-master\train\0 (9).png, 17287, 2017-07-01
PCA-SVM-master\train\1 (1).png, 156468, 2017-07-01
PCA-SVM-master\train\1 (10).png, 73695, 2017-07-01
PCA-SVM-master\train\1 (11).png, 39679, 2017-07-01
PCA-SVM-master\train\1 (12).png, 29476, 2017-07-01
PCA-SVM-master\train\1 (13).png, 22044, 2017-07-01
PCA-SVM-master\train\1 (14).png, 60911, 2017-07-01
PCA-SVM-master\train\1 (15).png, 35409, 2017-07-01
PCA-SVM-master\train\1 (2).png, 62669, 2017-07-01
PCA-SVM-master\train\1 (3).png, 107671, 2017-07-01
PCA-SVM-master\train\1 (4).png, 80643, 2017-07-01
PCA-SVM-master\train\1 (5).png, 55553, 2017-07-01
PCA-SVM-master\train\1 (6).png, 73401, 2017-07-01
PCA-SVM-master\train\1 (7).png, 39149, 2017-07-01
PCA-SVM-master\train\1 (8).png, 89830, 2017-07-01
PCA-SVM-master\train\1 (9).png, 57977, 2017-07-01
PCA-SVM-master\train\2 (1).png, 55868, 2017-07-01
PCA-SVM-master\train\2 (10).png, 17198, 2017-07-01
PCA-SVM-master\train\2 (11).png, 16991, 2017-07-01
PCA-SVM-master\train\2 (12).png, 15114, 2017-07-01
PCA-SVM-master\train\2 (13).png, 16953, 2017-07-01
PCA-SVM-master\train\2 (14).png, 15592, 2017-07-01
PCA-SVM-master\train\2 (15).png, 15629, 2017-07-01
PCA-SVM-master\train\2 (2).png, 38445, 2017-07-01
PCA-SVM-master\train\2 (3).png, 29013, 2017-07-01
PCA-SVM-master\train\2 (4).png, 23713, 2017-07-01
PCA-SVM-master\train\2 (5).png, 22353, 2017-07-01
PCA-SVM-master\train\2 (6).png, 19908, 2017-07-01
PCA-SVM-master\train\2 (7).png, 17392, 2017-07-01
PCA-SVM-master\train\2 (8).png, 19320, 2017-07-01
PCA-SVM-master\train\2 (9).png, 14394, 2017-07-01
PCA-SVM-master\测试集中心化图.png, 72662, 2017-07-01
PCA-SVM-master\特征图.png, 162253, 2017-07-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • bldc_simulink
    基于matlab/simulink的直流无刷电机的仿真。(Based on matlab/simulink simulation of DC brushless motors.)
    2010-08-25 19:30:56下载
    积分:1
  • 1483d06e871a
    matlab仿真可以实现一些高斯函数的matlab相应结果(matlab simulation)
    2012-04-16 11:31:42下载
    积分:1
  • location0506
    输电线路双端不同步故障测距程序,matlab的程序,利用两端数据计算故障距离(Two terminal lines are not synchronized fault location procedure, matlab procedures, the use of both ends of the data to calculate the fault distance)
    2014-05-13 23:04:16下载
    积分:1
  • 4psk
    超宽带程序示范程序\M-PSK4psk.rar(Ultra-wideband Program Files demonstration program M-PSK 4psk.rar)
    2009-10-22 15:54:41下载
    积分:1
  • Fuzzy-adaptive-control
    单臂机器人的模糊自适应控制程序,此程序由m文件结合simulink实现(Fuzzy adaptive robot arm control program, this program combines simulink realization by m file)
    2014-08-23 13:40:34下载
    积分:1
  • wzrh
    (1)针对在线计算量大这一缺陷,将预测控制中的柔化输出信号的思想推广到柔化输入信号,使得约束条件被简化为仅对当前控制量的约束,可以直接计算得出;同时该方法避免了求逆矩阵,大大减小了计算量,并能够保证控制算法的可行性和良好的控制性能。 (2)针对传统算法中设计参数整定困难这一缺点,应用基于BP神经网络变参数设计的广义预测控制算法,实现了对控制量柔化参数的在线调整。 (3)利用带有遗忘因子的最小二乘法对系统辨识。本文通过仿真发现该方法对于Hénon混沌系统并不完全适用,可考虑利用其他优化系统辨识的方法对本方法进行改进,以期达到更好的辨识效果。 (4)针对系统稳定性分析复杂,本文在控制增量前加入前馈因子,保证所选的Lyapunov函数使闭环系统满足Lyapunov稳定判据,由此证明闭环系统稳定。 (1. To solve the problem of GPC huge computation, algorithm with input increment constraints is presented in which the concept of output softness was used to soften the input increments.As a result, the constraints are simplified to be the only one constraint on the current control increment which can be computed directly. At the same time, it needn’t computing the inverse matrix and thus reduces large computation. Moreover, it guarantees the feasibility of the algorithm and has good control performance. 2. To overcome the difficulty in the choice of tuning parameters in traditional GPC, a GPC algorithm with variable parameter design based on BP neural network. is presented,in which the input softness parameters are tuned on line. 3. In this paper, we Identify system by using the least square method with forgetting factor. However, after system simulation, we realize that this method doesn’t fit the Hénon chaotic system perfectly. So we recommend modify this method by other Optimizati)
    2013-05-06 21:59:10下载
    积分:1
  • Jakes-model
    关于Jakes模型的两篇文章,对初学者有帮助(Two articles about Jakes Model)
    2016-04-11 22:16:12下载
    积分:1
  • SAADAT
    this book contains the matlab codes for power system analysis problems which also helps to write the matlab programs
    2009-10-01 12:35:35下载
    积分:1
  • Image
    图像处理 车辆跟踪 边缘检测 二值化等等 车辆检测 交通流(Image Edge Detection Vehicle Tracking Vehicle Detection binary traffic flow, etc.)
    2010-05-30 16:20:05下载
    积分:1
  • improved_gaborfilter
    Bi-dimensional Gabor filter with DC component compensation This version of the 2D Gabor filter is basically a bi-dimensional Gaussian function centered at origin (0,0) with variance S modulated by a complex sinusoid with polar frequency (F,W) and phase P described by the following equation: G(x,y,S,F,W,P)=k*Gaussian(x,y,S)*(Sinusoid(x,y,F,W,P)-DC(F,S,P)), where: Gaussian(x,y,S)=exp(-pi*S^2*(x^2+y^2)) Sinusoid(x,y,F,W,P)=exp(j*(2*pi*F*(x*cos(W)+y*sin(W))+P))) DC(F,S,P)=exp(-pi*(F/S)^2+j*P) File Id: 13776 Average rating: 0.0 Size: 1 KB # of reviews: 0 Submitted: 2007-01-26 Downloads: 274 Subscribers: 0 Keywords: gabor filter Stiven Schwanz Dias (Bi-dimensional Gabor filter with DC compo .. compensation This version of the 2D Gabor f ilter is basically a bi-dimensional Gaussian f unction centered at origin (0, 0) with variance S modulated by a complex sinuso id with polar frequency (F, W) and phase P described by the following equati on : G (x, y, S, F, W, P) = k* Gaussian (x, y, S)* (Sinusoid (x, y, F, W, P)- DC (F, S, P)), where : Gaussian (x, y, S) = exp (-pi* S* 2 ^ (x ^ 2 y ^ 2)) Sinusoid (x, y, F, W, P) = exp (j* (2* pi* F* (x* cos (W) y* sin (W)) P))) D C (F, S, P) = exp (-pi* (F/S) ^ 2* P j) File Id : 13776 Average rating : 0.0 Size :# 1 KB of reviews : 0 Submitted : 2007-01-26 Downloads : 274 Subscribers : 0 Keywords : gabor filter Stiven Schwanz Dias)
    2007-05-23 12:57:55下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载