登录
首页 » matlab » SCN_Matlab-master

SCN_Matlab-master

于 2016-06-27 发布 文件大小:2440KB
0 226
下载积分: 1 下载次数: 16

代码说明:

  深度神经网络,去模糊,超分辨重建,matlab代码。(Deep Networks for Image Super-Resolution with Sparse Prior)

文件列表:

SCN_Matlab-master
.................\data


.................\Demo_SR.m,1172,2016-04-05
.................\Demo_SR_Conv.m,1269,2016-04-05
.................\matconvnet
.................\..........\.gitattributes,119,2016-04-05
.................\..........\.gitignore,362,2016-04-05
.................\..........\.gitmodules,0,2016-04-05
.................\..........\htm" target=_blank>COPYING,735,2016-04-05
.................\..........\doc
.................\..........\...\blocks.tex,20209,2016-04-05
.................\..........\...\figures
.................\..........\...\.......\imnet.pdf,18884,2016-04-05
.................\..........\...\.......\pepper.pdf,702358,2016-04-05
.................\..........\...\.......\svg
.................\..........\...\.......\...\conv.svg,68592,2016-04-05
.................\..........\...\.......\...\convt.svg,65347,2016-04-05
.................\..........\...\fundamentals.tex,21296,2016-04-05
.................\..........\...\geometry.tex,16543,2016-04-05
.................\..........\...\impl.tex,16698,2016-04-05
.................\..........\...\intro.tex,18889,2016-04-05
.................\..........\...\Makefile,2071,2016-04-05
.................\..........\...\matconvnet-manual.tex,3773,2016-04-05
.................\..........\...\matdoc.py,7046,2016-04-05
.................\..........\...\matdocparser.py,11108,2016-04-05
.................\..........\...\references.bib,2729,2016-04-05
.................\..........\...\site
.................\..........\...\....\docs
.................\..........\...\....\....\about.md,4972,2016-04-05
.................\..........\...\....\....\css
.................\..........\...\....\....\...\fixes.css,863,2016-04-05
.................\..........\...\....\....\...\tables.css,1716,2016-04-05
.................\..........\...\....\....\developers.md,3392,2016-04-05
.................\..........\...\....\....\faq.md,1064,2016-04-05
.................\..........\...\....\....\functions.md,2587,2016-04-05
.................\..........\...\....\....\gpu.md,1095,2016-04-05
.................\..........\...\....\....\index.md,3131,2016-04-05
.................\..........\...\....\....\install-alt.md,3404,2016-04-05
.................\..........\...\....\....\install.md,7721,2016-04-05
.................\..........\...\....\....\js
.................\..........\...\....\....\..\mathjaxhelper.js,138,2016-04-05
.................\..........\...\....\....\..\toggle.js,191,2016-04-05
.................\..........\...\....\....\pretrained.md,8571,2016-04-05
.................\..........\...\....\....\quick.md,2556,2016-04-05
.................\..........\...\....\....\training.md,1047,2016-04-05
.................\..........\...\....\....\wrappers.md,9159,2016-04-05
.................\..........\...\....\mkdocs.yml,1833,2016-04-05
.................\..........\...\wrappers.tex,7100,2016-04-05
.................\..........\examples
.................\..........\........\cnn_cifar.m,4529,2016-04-05
.................\..........\........\cnn_cifar_init.m,2543,2016-04-05
.................\..........\........\cnn_cifar_init_nin.m,4930,2016-04-05
.................\..........\........\cnn_imagenet.m,6349,2016-04-05
.................\..........\........\cnn_imagenet_camdemo.m,1806,2016-04-05
.................\..........\........\cnn_imagenet_evaluate.m,2960,2016-04-05
.................\..........\........\cnn_imagenet_get_batch.m,3463,2016-04-05
.................\..........\........\cnn_imagenet_googlenet.m,831,2016-04-05
.................\..........\........\cnn_imagenet_init.m,13358,2016-04-05
.................\..........\........\cnn_imagenet_minimal.m,932,2016-04-05
.................\..........\........\cnn_imagenet_setup_data.m,7311,2016-04-05
.................\..........\........\cnn_imagenet_sync_labels.m,588,2016-04-05
.................\..........\........\cnn_mnist.m,3314,2016-04-05
.................\..........\........\cnn_mnist_dag.m,3786,2016-04-05
.................\..........\........\cnn_mnist_experiments.m,828,2016-04-05
.................\..........\........\cnn_mnist_init.m,2385,2016-04-05
.................\..........\........\cnn_train.m,14363,2016-04-05
.................\..........\........\cnn_train_dag.m,10207,2016-04-05
.................\..........\........\cnn_vgg_faces.m,931,2016-04-05
.................\..........\Makefile,8623,2016-04-05
.................\..........\Makefile.mex,793,2016-04-05
.................\..........\Makefile.nvcc,925,2016-04-05
.................\..........\matconvnet.sln,886,2016-04-05
.................\..........\matconvnet.vcxproj,8658,2016-04-05
.................\..........\matconvnet.vcxproj.filters,10956,2016-04-05
.................\..........\matconvnet.xcodeproj
.................\..........\....................\project.pbxproj,76099,2016-04-05
.................\..........\....................\project.xcworkspace
.................\..........\....................\...................\contents.xcworkspacedata,152,2016-04-05
.................\..........\....................\xcshareddata
.................\..........\....................\............\xcschemes
.................\..........\....................\............\.........\matconv CPU.xcscheme,2853,2016-04-05
.................\..........\....................\............\.........\matconv cuDNN.xcscheme,2865,2016-04-05
.................\..........\....................\............\.........\matconv GPU.xcscheme,2853,2016-04-05
.................\..........\matlab
.................\..........\......\%2Bdagnn
.................\..........\......\......\@DagNN
.................\..........\......\......\......\addLayer.m,1299,2016-04-05
.................\..........\......\......\......\DagNN.m,9223,2016-04-05
.................\..........\......\......\......\eval.m,4208,2016-04-05
.................\..........\......\......\......\fromSimpleNN.m,8666,2016-04-05
.................\..........\......\......\......\getVarReceptiveFields.m,3549,2016-04-05
.................\..........\......\......\......\getVarSizes.m,502,2016-04-05
.................\..........\......\......\......\initParams.m,763,2016-04-05
.................\..........\......\......\......\loadobj.m,1347,2016-04-05
.................\..........\......\......\......\move.m,793,2016-04-05
.................\..........\......\......\......\print.m,11333,2016-04-05
.................\..........\......\......\......\rebuild.m,3103,2016-04-05
.................\..........\......\......\......\removeLayer.m,528,2016-04-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • CHW4
    Linear Perceptron Classifier and Least Square Classifier Algorithms
    2014-12-23 01:55:10下载
    积分:1
  • GMF_program
    GMF(Graphical Modeling Framework)是Eclipse的一个开源项目,它在结合了EMF和GEF的 基础上,为基于模型的图形化编辑器的开发提供了一个功能强大的框架,开发人员可以采用建 模的方式很容易的生成高质量的代码框架。(GMF (Graphical Modeling Framework) Eclipse is an open source project, it combines the foundation on EMF and GEF, provides a powerful graphical editor framework for model-based development, developers can adopt the modeling approach easily generate high-quality code framework.)
    2014-02-11 17:19:28下载
    积分:1
  • 线性调频信号的速度多普勒模糊函数chirp-ambiguity
    线性调频信号的速度多普勒模糊函数,有三维以及二维截面图(The speed of linear frequency modulation signal doppler fuzzy function, there are three dimensional and two dimensional section graph)
    2020-07-08 08:48:57下载
    积分:1
  • Acceleratingaircraftdesign
    Aerospace Toolbox 1.0 and Aerospace Blockset 2.2 made it easier to model and simulate aircraft dynamics in Simulink.
    2009-07-14 22:27:38下载
    积分:1
  • Newmark
    说明:  用matlab编的小程序,希望对大家有所帮助!(using Matlab series of small programs, we hope to help!)
    2006-04-13 09:37:26下载
    积分:1
  • Bayeisan-Inversion-Classical-Example
    该程序为经典的贝叶斯分类源代码,不仅可以应用于地球物理中的岩性和岩相划分,也可以做储层参数预测!(The source code for classic bayesian classification, the program not only can be used in the lithology and lithofacies division in geophysics, reservoir parameter prediction can also do! )
    2014-09-26 16:28:51下载
    积分:1
  • TDLTE_technology_principle
    TDlte的技术原理 从运营商层面解析LTE(TDlte the technical principles)
    2013-11-16 17:37:56下载
    积分:1
  • LSSVM
    最小二乘支持向量机,主要用于多类别分类,包含matlab程序(Least squares support vector machine for multi-class classification, including matlab program )
    2012-01-10 12:02:18下载
    积分:1
  • 滑膜观测器matlab仿真
    说明:  滑膜观测器matlab仿真实现滑膜观测器的基本功能(The basic function of the sliding film observer realized by MATLAB simulation)
    2019-12-13 13:23:57下载
    积分:1
  • anc_headphone_two_micphone_4
    ANC算法的前馈实现,它可以实现噪声的消除,有相关的做这个的人也可以跟我交流,我遇到问题了。。13548074570(the anc used feedforward)
    2010-05-10 19:51:53下载
    积分:1
  • 696518资源总数
  • 106126会员总数
  • 7今日下载