-
Find-root-Maple
Newton Raphsson Method For solving Numberical Calculation! Written Ba alireza mahdavi(iran)
- 2012-07-05 15:49:22下载
- 积分:1
-
python 程序
此为众多Python小案例,可以做学习用。(This is a small case of Python.)
- 2017-08-10 10:17:18下载
- 积分:1
-
四阶龙格-库塔法
说明: 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)
- 2020-07-04 18:33:12下载
- 积分:1
-
BZreaction_diffusion
模拟二维BZ反应扩散模型,方法是用显式EULER法求解模型的偏微分方程组(Simulated two-dimensional BZ reaction-diffusion model, the method is to use explicit EULER method for solving partial differential equations model)
- 2011-09-21 12:00:27下载
- 积分:1
-
模拟退火算法 msa
模拟退火算法,地球物理反演,非线性反演算法(Simulated annealing algorithm)
- 2020-06-23 10:40:01下载
- 积分:1
-
matlab 传感器异步融合仿真程序 data fusion
说明: matlab 传感器异步融合仿真程序,目前File Exchange中一共有超过35000个文件,这两天我对这三万多份源代码和模型进行了统计整理,将其中下载量最高的前1000个文件信息及链接,收录到了微信小程序中。(Matlab sensor asynchronous fusion simulation program At present, there are more than 35,000 files in File Exchange. In the past two days, I have compiled and compiled these more than 30,000 source codes and models, and included the information and links of the top 1,000 files with the highest download volume in the WeChat applet.)
- 2020-06-25 15:06:47下载
- 积分:1
-
SDCS
用matlab实现的改进的布谷鸟算法——SDCS,它是将最速下降法与CS相结合的(Matlab implementation of the improved algorithm of the cuckoo- SDCS , it will steepest descent method with CS
)
- 2020-09-25 10:27:47下载
- 积分:1
-
Job-niantan-s-t-1
abaqus粘弹性人工边界,手动添加比较简单的模型(learning abaqus)
- 2013-09-18 21:30:46下载
- 积分:1
-
squarecircfit
本人编写的基于最小二乘法的圆拟合程序,可直接下载使用。(I prepared the least squares method based on circle fitting procedures, can be directly download.)
- 2009-03-18 16:39:05下载
- 积分:1
-
hartigansSLC_OpenCV
hartigans Sequential Leader Clustering Algorithm in terms of OpenCV (ver.1.1)
Sequential Leader algorithm:
Hartigan, J. A. (1975), Clustering Algorithms. John Wiley and Sons, Inc., New York, NY.
1. Select maximum cluster "radius"
2. Start with zero clusters
3. Add each item to be clustered to:
* Closest cluster if distance <= r
* New cluster if distance to closest cluster > r
4. Compute new center from members in cluster
5. Empty the clusters (keeping the centers)
6. Return to step 3 (until no changes are made)
- 2010-02-25 19:28:25下载
- 积分:1