登录
首页 » matlab » uwb各种程序 Ultra_wide_Fundamental_test

uwb各种程序 Ultra_wide_Fundamental_test

于 2020-06-25 发布 文件大小:62KB
0 193
下载积分: 1 下载次数: 0

代码说明:

  uwb各种程序,可以产生信号、冲激响应等等各类仿真任务完美完成(UWB programs can generate signals, impulse response and other simulation tasks to complete perfectly)

文件列表:

Ultra_wide_Fundamental_test\CP0101\CP0101_BANDWIDTH.M, 2945 , 2004-03-06
Ultra_wide_Fundamental_test\CP0101\CP0101_GENRECT.M, 1230 , 2004-03-06
Ultra_wide_Fundamental_test\CP0102\CP0102_SINPULSE_ONE.M, 2967 , 2004-03-06
Ultra_wide_Fundamental_test\CP0102\CP0102_SINPULSE_TWO.M, 2973 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_2PPM_TH.M, 1841 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_BITS.M, 410 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_REPCODE.M, 643 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_TH.M, 364 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_TRANSMITTER_2PPM_TH.M, 3847 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\CP0201_WAVEFORM.M, 1411 , 2004-03-06
Ultra_wide_Fundamental_test\CP0201\my_test.asv, 1961 , 2007-03-14
Ultra_wide_Fundamental_test\CP0201\my_test.m, 1927 , 2007-03-14
Ultra_wide_Fundamental_test\CP0202\CP0202_2PAM_DS.M, 1542 , 2004-03-06
Ultra_wide_Fundamental_test\CP0202\CP0202_DS.M, 348 , 2004-03-06
Ultra_wide_Fundamental_test\CP0202\CP0202_TRANSMITTER_2PAM_DS.M, 3270 , 2004-03-06
Ultra_wide_Fundamental_test\CP0203\CP0203_OFDM_QPSK.M, 3939 , 2004-03-06
Ultra_wide_Fundamental_test\CP0203\CP0203_QPSK_MOD.M, 741 , 2004-03-06
Ultra_wide_Fundamental_test\CP0301\CP0301_PPM_SIN.M, 1965 , 2004-03-06
Ultra_wide_Fundamental_test\CP0301\CP0301_PSD.M, 993 , 2004-03-06
Ultra_wide_Fundamental_test\CP0302\CP0302_PPM_PERIODIC.M, 1703 , 2004-03-06
Ultra_wide_Fundamental_test\CP0303\CP0303_PPM_RANDOM.M, 2113 , 2004-03-06
Ultra_wide_Fundamental_test\CP0402\CP0402_2PAM_TH.M, 1572 , 2004-03-06
Ultra_wide_Fundamental_test\CP0402\CP0402_TRANSMITTER_2PAM_TH.M, 3652 , 2004-03-06
Ultra_wide_Fundamental_test\CP0602\CP0602_GAUSSIAN_PSD_NTH.M, 1007 , 2004-03-06
Ultra_wide_Fundamental_test\CP0602\CP0602_LINK_BUDGET.M, 3175 , 2004-03-06
Ultra_wide_Fundamental_test\CP0602\CP0602_MAX_DISTANCE.M, 1031 , 2004-03-06
Ultra_wide_Fundamental_test\CP0602\CP0602_SYMBOL_ERROR_PROBABILI.M, 1629 , 2004-03-06
Ultra_wide_Fundamental_test\CP0602\CP0602_THR_DB_VECTORS.M, 2044 , 2004-03-06
Ultra_wide_Fundamental_test\CP0701\CP0701_SHAPE_FACTOR_VARIATION.M, 3530 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_ANALYTICAL_WAVEFORMS.M, 3934 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_BANDWIDTH.M, 1997 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_GAUSSIAN_DERIVATIVES.M, 2164 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_GAUSSIAN_DERIVATIVES_1.M, 2654 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_GAUSSIAN_DERIVATIVES_E.M, 3105 , 2004-03-06
Ultra_wide_Fundamental_test\CP0702\CP0702_GAUSSIAN_DERIVATIVES_P.M, 3372 , 2004-03-06
Ultra_wide_Fundamental_test\CP0703\CP0703_GENERATE_MASK.M, 975 , 2004-03-06
Ultra_wide_Fundamental_test\CP0703\CP0703_GET_ALPHA_VALUE.M, 1107 , 2004-03-06
Ultra_wide_Fundamental_test\CP0703\CP0703_RANDOM_COEFFICIENTS.M, 4032 , 2004-03-06
Ultra_wide_Fundamental_test\CP0703\CP0703_RANDOM_PULSE_COMBINATI.M, 5741 , 2004-03-06
Ultra_wide_Fundamental_test\CP0704\CP0704_LSE_PULSE_COMBINATION.M, 4161 , 2004-03-06
Ultra_wide_Fundamental_test\CP0704\CP0704_TIME_MASK.M, 2050 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_GNOISE1.M, 1209 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_GNOISE2.M, 1273 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_PAMCORRMASK.M, 702 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_PAMRECEIVER.M, 3353 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_PATHLOSS.M, 581 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_PPMCORRMASK.M, 939 , 2004-03-06
Ultra_wide_Fundamental_test\CP0801\CP0801_PPMRECEIVER.M, 3353 , 2004-03-06
Ultra_wide_Fundamental_test\CP0802\CP0802_IEEEUWB.M, 4554 , 2004-03-06
Ultra_wide_Fundamental_test\CP0802\CP0802_PDP.M, 762 , 2004-03-06
Ultra_wide_Fundamental_test\CP0802\CP0802_RMSDS.M, 711 , 2004-03-06
Ultra_wide_Fundamental_test\CP0803\CP0803_PAMCORRMASK_R.M, 888 , 2004-03-06
Ultra_wide_Fundamental_test\CP0803\CP0803_PPMCORRMASK_R.M, 1114 , 2004-03-06
Ultra_wide_Fundamental_test\CP0803\CP0803_RAKESELECTOR.asv, 3011 , 2009-05-24
Ultra_wide_Fundamental_test\CP0803\CP0803_RAKESELECTOR.M, 3039 , 2009-05-24
Ultra_wide_Fundamental_test\CP0804\CP0804_CORRSYN.M, 651 , 2004-03-06
Ultra_wide_Fundamental_test\CP0804\CP0804_SIGNALSHIFT.M, 461 , 2004-03-06
Ultra_wide_Fundamental_test\CP0901\CP0901_MUIBER_2PAM.M, 1368 , 2004-03-06
Ultra_wide_Fundamental_test\CP0901\CP0901_MUIBER_2PPM.M, 1853 , 2004-03-06
Ultra_wide_Fundamental_test\CP0901\CP0901_SM2_PAM.M, 830 , 2004-03-06
Ultra_wide_Fundamental_test\CP0901\CP0901_SM2_PPM.M, 1072 , 2004-03-06
Ultra_wide_Fundamental_test\CP0902\CP0902_EFFPULSE.M, 1023 , 2004-03-06
Ultra_wide_Fundamental_test\CP0902\CP0902_PRBCOLL.M, 1013 , 2004-03-06
Ultra_wide_Fundamental_test\CP1002\CP1002_CREATE_NETWORK.M, 1336 , 2004-03-06
Ultra_wide_Fundamental_test\CP1002\CP1002_FIND_LSE_POSITION.M, 1923 , 2004-03-06
Ultra_wide_Fundamental_test\CP1002\CP1002_SELECT_NODES.M, 850 , 2004-03-06
Ultra_wide_Fundamental_test\FOR_THE_CURIOUS_READER\ALPHA_OMEGA.M, 2301 , 2004-03-06
Ultra_wide_Fundamental_test\LIST_OF_FUNCTIONS.TXT, 4952 , 2007-03-12
Ultra_wide_Fundamental_test\代理.txt, 19 , 2009-03-30
Ultra_wide_Fundamental_test\CP0101, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0102, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0201, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0202, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0203, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0301, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0302, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0303, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0402, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0602, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0701, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0702, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0703, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0704, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0801, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0802, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0803, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0804, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0901, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP0902, 0 , 2019-06-27
Ultra_wide_Fundamental_test\CP1002, 0 , 2019-06-27
Ultra_wide_Fundamental_test\FOR_THE_CURIOUS_READER, 0 , 2019-06-27
Ultra_wide_Fundamental_test, 0 , 2019-06-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • labwindows/CVI的虚拟仪器设计(电子版)
    labwindows/CVI的虚拟仪器设计(电子版) 本书详细地介绍了应用当前信号分析与处理新技术来设计不同测量功能的虚拟仪器的工作原理和方法。内容包括虚拟仪器设计的方法和步骤,I/O接口设备的软件驱动,LabWindows/CVI与MATLAB语言的接口,以及基于自相关伪随机系统辨识、神经网络、小波变换、模糊理论等技术虚拟仪器设计的方法和技巧。 本书内容新颖丰富、论述简洁,提供了大量典型的实例。本书可作为大专院校教科书,也可作为工程技术人员和科技工作者学习设计虚拟仪器的自学用书。(labwindows/CVI virtual instrument design (electronic version) the book details on the application current signal analysis and processing technology to design new measurement functions of different virtual machines, the principle and method. Including virtual instrument design methods and steps, I/O interface of the software-driven equipment, LabWindows/CVI and MATLAB language interface, Based on the correlation of pseudo-random system identification, neural network, wavelet transform, Fuzzy theory virtual instrument technology design methods and techniques. The contents are rich novel, concise exposition, a large number of typical examples. This book tertiary textbooks can also be used as engineering and technical workers should study the design of virtual instrument self-learning bo)
    2007-05-03 16:18:50下载
    积分:1
  • 1807.01622
    说明:  深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • MATLAB
    说明:  matlab的一些基础讲解,适用于初学者。主要是关于在数字信号处理课程中的应用。(to explain some basic matlab for beginners. Mainly on the course in digital signal processing applications.)
    2011-03-13 13:44:48下载
    积分:1
  • 14
    说明:  图象压缩方面的论文pdf格式 可用于毕业设计方面的工作(Image compression pdf format papers for school design work)
    2010-05-26 20:37:45下载
    积分:1
  • sine
    在dds中基于matlab来实现lpm_rom的编写 设置 ROM 的信息,数据宽度为 10bits,数据个数为 4096;设置 ROM为寄存器输出,不需要时钟和异步清零信号(Matlab based in dds preparation to achieve lpm_rom ROM set of information, data width 10bits, the number is 4096 data set the ROM output to register, no clock and asynchronous clear signal)
    2011-06-14 22:38:29下载
    积分:1
  • daitonglvbo
    用matlab实现FIR滤波器的带通滤波器设计,简单实用(Matlab FIR filter band-pass filter design, simple and practical)
    2012-05-23 22:24:38下载
    积分:1
  • prc6
    introduction to various data class and its application in various domain
    2011-08-18 23:18:27下载
    积分:1
  • lvbo
    传统的契比雪夫滤波器在51单片上实现,通过数字滤波解决传统硬件滤波的缺点(Realization of Chebyshev filter in the traditional 51 monolithic, solve the traditional hardware filtering by digital filtering.)
    2013-04-07 08:25:44下载
    积分:1
  • JPEG
    并行处理J PEG算法的优化(Image compression can be used for graduate thesis work of design)
    2010-05-26 20:29:04下载
    积分:1
  • The-influence-of-target-bearing
    等间距线性阵列,阵元数M=8,阵元间距d= λ /2, 等幅加权,无噪声。 分别仿真计算目标方位φr =0°、30°时的阵列方向图。 (The spacing of the linear array, and the array element number M = 8, the array element spacing d = λ/2, equal amplitude weighted, no noise. Respectively simulation calculation the target azimuth φr = 0,30 array pattern.)
    2013-01-22 20:41:24下载
    积分:1
  • 696518资源总数
  • 105563会员总数
  • 11今日下载