登录
首页 » matlab » 用matlab 实现了kmeans算法

用matlab 实现了kmeans算法

于 2020-06-19 发布 文件大小:2410KB
0 277
下载积分: 1 下载次数: 0

代码说明:

  用matlab 实现了kmeans算法还附有评价指标计算(Matlab to achieve kmeans algorithm also attached to the evaluation index calculation)

文件列表:

KMeans\4.mat, 5013 , 2014-11-01
KMeans\adjusted_Evaluation.m, 12086 , 2018-06-04
KMeans\Bat_Kmeans_r.m, 1724 , 2019-03-23
KMeans\check_K.m, 510 , 2017-05-16
KMeans\DataSet\1.mat, 1098 , 2014-11-01
KMeans\DataSet\10.mat, 43403 , 2014-11-01
KMeans\DataSet\11.mat, 443 , 2014-11-01
KMeans\DataSet\12.mat, 50610 , 2014-11-01
KMeans\DataSet\13.mat, 29391 , 2014-11-01
KMeans\DataSet\14.mat, 3574 , 2016-11-22
KMeans\DataSet\15.mat, 1288 , 2016-11-22
KMeans\DataSet\16.mat, 32271 , 2016-11-22
KMeans\DataSet\17.mat, 1608 , 2016-11-22
KMeans\DataSet\18.mat, 1923 , 2016-11-22
KMeans\DataSet\19.mat, 1875 , 2016-11-22
KMeans\DataSet\2.mat, 5423 , 2014-11-01
KMeans\DataSet\20.mat, 1555 , 2016-11-22
KMeans\DataSet\21.mat, 4461 , 2016-11-22
KMeans\DataSet\22.mat, 7191 , 2014-11-01
KMeans\DataSet\23.mat, 50803 , 2014-11-01
KMeans\DataSet\24.mat, 130996 , 2014-11-01
KMeans\DataSet\25.mat, 247415 , 2014-11-01
KMeans\DataSet\26.mat, 53587 , 2014-11-01
KMeans\DataSet\27.mat, 57709 , 2014-11-01
KMeans\DataSet\28.mat, 36419 , 2014-11-01
KMeans\DataSet\29.mat, 112531 , 2014-11-01
KMeans\DataSet\3.mat, 5136 , 2014-11-01
KMeans\DataSet\30.mat, 1143333 , 2014-11-01
KMeans\DataSet\31.mat, 218866 , 2014-11-01
KMeans\DataSet\32.mat, 5766 , 2017-10-29
KMeans\DataSet\33.mat, 114658 , 2017-10-29
KMeans\DataSet\34.mat, 3854 , 2017-11-07
KMeans\DataSet\35.mat, 13313 , 2017-11-07
KMeans\DataSet\36.mat, 4257 , 2017-11-07
KMeans\DataSet\37.mat, 15129 , 2017-11-07
KMeans\DataSet\38.mat, 13299 , 2017-11-07
KMeans\DataSet\4.mat, 5013 , 2014-11-01
KMeans\DataSet\5.mat, 593 , 2014-11-01
KMeans\DataSet\6.mat, 3136 , 2014-11-01
KMeans\DataSet\7.mat, 16037 , 2014-11-01
KMeans\DataSet\8.mat, 1490 , 2014-11-01
KMeans\DataSet\9.mat, 2057 , 2014-11-01
KMeans\DataSet\test_DataSet.m, 3242 , 2017-11-08
KMeans\jb_scaling.m, 549 , 2016-12-04
KMeans\loadData.m, 634 , 2017-10-31
KMeans\MyShow.m, 2950 , 2018-09-27
KMeans\ResultKmeans\Bat_Kmeans_artificial.xlsx, 9150 , 2019-03-23
KMeans\ResultKmeans\iris1.mat, 6438 , 2019-03-23
KMeans\self_Evaluation.m, 5053 , 2016-12-15
KMeans\self_Kmeans.m, 2030 , 2016-12-15
KMeans\test_Cell.m, 1706 , 2016-12-15
KMeans\test_DataSet.m, 3242 , 2017-11-08
KMeans\test_Index.m, 856 , 2017-11-01
KMeans\DataSet\数据集, 0 , 2018-08-04
KMeans\ResultKmeans\Kmeans, 0 , 2018-04-12
KMeans\DataSet, 0 , 2018-06-06
KMeans\ResultKmeans, 0 , 2019-03-23
KMeans, 0 , 2018-09-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • boxcox
    boxcox函数的python实现,引用该函数可将偏态分布调整为正态分布(Python implementation of box Cox function)
    2020-06-17 09:40:01下载
    积分:1
  • Archive
    PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • sklearn-tree-BN-knn
    分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • MSA
    自动生成Excel表格,包括测量系统分析MSA GR&R--均值极差法 ,方差分析,均值极差(Automatic generation of Excel tables, including measurement system analysis MSA GR&R - mean extreme difference method, variance analysis, mean extreme difference)
    2019-06-20 21:24:10下载
    积分:1
  • MF-DFA-master
    多重分形去趋势波动分析法,用于不同时间序列的重分形交叉相关性分析。(Multifractal detrended fluctuation analysis)
    2018-09-06 14:29:01下载
    积分:1
  • KKDZSXX
    扩展卡尔曼滤波与无迹卡尔曼滤波的跟踪滤波性能的比较()
    2020-10-08 14:57:36下载
    积分:1
  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • GibbsLDA
    用Gibb Sampling 的方法对LDA的参数进行推断(LDA model with Gibbs Sampling for inference)
    2019-01-24 09:28:57下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • pu_ju_lei
    说明:  将数据集转换为拉普拉斯矩阵,然后利用基于图论的谱聚类进行聚类。拉普拉斯矩阵采用高斯核函数,全连接方法计算。谱聚类擅长处理高维数据或非凸数据集。(The data set is transformed into Laplacian matrix, and then clustered by spectral clustering based on graph theory. The Laplacian matrix is calculated by using the Gauss kernel function and the full connection method. Spectral clustering is good at dealing with high-dimensional or non-convex data sets.)
    2019-07-01 16:05:39下载
    积分:1
  • 696518资源总数
  • 105559会员总数
  • 1今日下载