登录
首页 » matlab » SP_Liu_TCSVT_code2014

SP_Liu_TCSVT_code2014

于 2020-06-16 发布 文件大小:28731KB
0 219
下载积分: 1 下载次数: 0

代码说明:

  用于显著性检测的对比算法SP的MATLAB版本,比较新的是2013年的,亲测可用(MatLAB version of SP, a contrast algorithm for saliency detection, is relatively new in 2013, and pro-test is available.)

文件列表:

SP_Liu_TCSVT_code\buildConectMatrix.p, 490 , 2015-03-02
SP_Liu_TCSVT_code\data\inputVideos\AN119T\2_SP.jpg, 7251 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T\3_SP.jpg, 7197 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T\4_SP.jpg, 7136 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T\5_SP.jpg, 6797 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T\6_SP.jpg, 6841 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T\7_SP.jpg, 6565 , 2015-03-30
SP_Liu_TCSVT_code\data\inputVideos\AN119T.avi, 30423444 , 2009-09-11
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\demoLDOF.m, 105 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\mex_LDOF.m, 761 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\mex_LDOF.mexa64, 97825 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\mex_LDOF.mexw32, 53760 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\mex_LDOF.mexw64, 75264 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\pami2010Matlab.zip, 786067 , 2013-11-05
SP_Liu_TCSVT_code\ExternalCode\broxPAMI2011\readme.txt, 1023 , 2013-10-22
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\.gitattributes, 59 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\.gitignore, 700 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\phow_caltech101.m, 11594 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\encodeImage.m, 5278 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\experiments.m, 6905 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\extendDescriptorsWithGeometry.m, 822 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\getDenseSIFT.m, 1679 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\readImage.m, 919 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\setupCaltech256.m, 2495 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\setupFMD.m, 1197 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\setupGeneric.m, 4024 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\setupScene67.m, 2368 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\setupVoc.m, 5189 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\trainEncoder.m, 6226 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\recognition\traintest.m, 6097 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\apps\sift_mosaic.m, 4621 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\aib, 8396 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\libvl.so, 293498 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\mser, 21717 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\sift, 26345 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_gauss_elimination, 8327 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_getopt_long, 8597 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_gmm, 13455 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_heap-def, 12462 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_host, 8345 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_imopv, 8611 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_kmeans, 8500 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_liop, 8389 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_mathop, 12490 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_mathop_abs, 8450 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_nan, 8374 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_qsort-def, 12413 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_rand, 8386 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_sqrti, 8305 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_stringop, 12718 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_svd2, 8459 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_threads, 8669 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnx86\test_vec_comp, 8635 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\aib, 14080 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\libvl.so, 370313 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\mser, 23649 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\sift, 32519 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_gauss_elimination, 9883 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_getopt_long, 10299 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_gmm, 15335 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_heap-def, 14050 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_host, 9925 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_imopv, 14383 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_kmeans, 10128 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_liop, 9977 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_mathop, 14141 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_mathop_abs, 10078 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_nan, 9962 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_qsort-def, 13977 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_rand, 9966 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_sqrti, 9865 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_stringop, 14376 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_svd2, 14175 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_threads, 14441 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\glnxa64\test_vec_comp, 14391 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\aib, 9384 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\libvl.dylib, 279560 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\mser, 22636 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\sift, 31248 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_gauss_elimination, 9264 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_getopt_long, 9388 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_gmm, 14416 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_heap-def, 21836 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_host, 9300 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_imopv, 9572 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_kmeans, 9452 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_liop, 9364 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_mathop, 13396 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_mathop_abs, 9400 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_nan, 9316 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_qsort-def, 9276 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_rand, 9372 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_sqrti, 9232 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_stringop, 13612 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_svd2, 9416 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_threads, 9564 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci\test_vec_comp, 9588 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci64\aib, 8956 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci64\libvl.dylib, 303760 , 2014-09-12
SP_Liu_TCSVT_code\ExternalCode\vlfeat-0.9.19\bin\maci64\mser, 22320 , 2014-09-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Lee
    增强型Lee滤波,附有详细注释,简单易用,参数可调(enhanced LEE filter)
    2021-04-17 16:38:52下载
    积分:1
  • Reversible-New-Code
    Reversible data hiding in images
    2011-09-08 15:09:36下载
    积分:1
  • kantu
    可以打开大部分图片格式包括bmp、jpg等,并对其进行图片的基本处理包括翻转、镜像、傅里叶变换、直方图统计及均衡化、锐化、柔化、加椒盐或高斯噪声、中值滤波、Sobel边缘检测、高斯边缘检测、灰度阀值边缘检测、区域生长、旋转、缩放等操作(Can open most image formats including bmp, jpg, etc., and its basic image processing including flip, mirror, Fourier transform, histogram equalization statistics and, sharpen, soften, add salt and pepper or gaussian noise , median filtering, Sobel edge detection, Gaussian edge detection, gray level threshold edge detection, region growing, rotation, scaling and other operations)
    2011-04-28 23:47:11下载
    积分:1
  • daima
    题目: 八宝粥的生产过程中需要用到大量的红豆(红蚕豆),而实际上从红豆产地购买得到的红豆中会参杂一些杂物和不合格红豆。为了保证八宝粥的质量,需要对红豆进行筛选,去除不合格红豆和其它杂物。目前国内在红豆筛选工序上仍然使用人工筛选的方式,存在人工成本高、精确度差、劳动强度大等缺点。因此八宝粥生产厂商迫切需求开发一款能够自动实现红豆筛选的自动化筛选机。针对上述需求,请设计筛选机中的基于可见光图像的红豆筛选算法,该算法应尽可能的准确的找到参杂在红豆原料中的不合格红豆和杂物。 附件包括两个不同实验环境下拍摄得到的红豆相关图片样本库,实验环境分别为自然光照条件和灯光条件。每个条件下的样本库包括合格、不合格、杂物和混合四类样本的图像,其中合格、不合格以及杂物的图像可用来训练或建模,混合类图像用来测试算法的准确性和实时性。同学可在自然光照环境下的样本库或者灯光条件下的样本库中任选其一,用于解决上述问题。 作业提交格式包括以下四个内容: 一、 问题分析 二、 算法设计 三、 实验结果(将自己选择的样本库中的混合样本图片中的样本个体进行分类,并给出可视化的分类结果。) (Title:Use a lot of red bean production process of eight-treasure porridge ( red bean ), but in fact from the Red areas available in red bean can blend some sundries and unqualified red bean. In order to ensure the quality of eight-treasure porridge, the need for screening of red bean, red bean and other debris removal is not qualified. At present in the domestic bean screening process still use manual screening method, has the disadvantages of high labor costs, poor accuracy, high labor intensity. Therefore, eight-treasure porridge manufacturers need to develop a can achieve automatic bean screening automatic screening machine. According to the above requirements, please design screening machine selection algorithm based on visible light image of the red, the algorithm should be as accurate as possible to find the mixed in the bean raw materials in the unqualified red bean and debris.Accessories include captured in two different experimental environment of the red bean image sample dat)
    2013-03-11 21:10:47下载
    积分:1
  • PNG(96)
    96个蛮实用的PNG格式图标 仅供编程或图像处理使用。(96 pretty practical PNG format icon super practical!)
    2012-10-11 09:15:23下载
    积分:1
  • Fundamentals_Radar
    雷达信号处理基础教程,对雷达信号基础处理技术提供了简洁、统一、现代的表述,包括信号模型、匹配滤波、脉冲压缩、多普勒处理,阈值检测等。(Fundamentals of Radar Signal Processing)
    2013-03-19 18:35:42下载
    积分:1
  • 3
    说明:  运用低通滤波器,中心削波和自相关技术估计一段男性和女性语音信号的基音周期,画出基音轨迹曲线,给出估计准确率。(The use of low-pass filter, the center clipping and related technologies is estimated from a male and female speech signal pitch period, pitch trajectory drawn curves of estimated accuracy.)
    2010-05-07 14:51:01下载
    积分:1
  • Tensor-Voting
    张量投票算法,对连接断裂的线段有很好的效果(Tensor Voting)
    2011-11-03 10:59:59下载
    积分:1
  • two
    :植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。然而,低维特征不能全面描述叶片信息,识别准确率低,本文提 出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。使用降维后的训练样本特征数据对支持向量 机分类器进行训练(plant species identification method is mainly based on blade automatic identification of low dimensional characteristics.However, can not fully describe blade low-dimensional feature information, identification accuracy is low, in this paper A kind of plant leaves recognition method based on multiple feature dimension reduction.First by digital image processing technology to the plant leaf color sample image preprocessing, obtain background color removal, wormhole, petioles, and the blades of a binary image, gray image and texture image.Then the binary image to extract the geometric characteristics and characteristics of structure and characteristics of gray image extraction Hu moment invariants, gray co-occurrence matrix feature, local binary pattern features and Gabor, to extract the fractal dimension of texture image, get 2183 d characteristic parameters.By principal component analysis and linear uation analysis method of combining the characteristics of blade more feature dimensi)
    2017-02-28 09:57:50下载
    积分:1
  • PROCESS
    LabWindows /CVI 大学实验指导书,难度循序渐进,一套下来,基本操作都会了。推荐一下(LabWindows/CVI University experiment instructions, the difficulty of step-by-step, set down, the basic operation will be. You recommend)
    2013-04-28 00:40:04下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载