登录
首页 » matlab » MFOA

MFOA

于 2020-06-16 发布 文件大小:3694KB
0 280
下载积分: 1 下载次数: 1

代码说明:

  基于CEC——2017benchmark测试集,计算最优 修正的果蝇算法,弥补原始果蝇算法在负数集上的缺失(modify fruit fly optimization)

文件列表:

cec17_func.cpp, 41819 , 2019-01-17
cec17_func.mexw64, 51712 , 2017-06-29
input_data, 0 , 2019-01-17
input_data\M_10_D10.txt, 2520 , 2016-09-04
input_data\M_10_D100.txt, 250200 , 2016-09-04
input_data\M_10_D2.txt, 104 , 2016-09-04
input_data\M_10_D20.txt, 10040 , 2016-09-04
input_data\M_10_D30.txt, 22560 , 2016-09-04
input_data\M_10_D50.txt, 62600 , 2016-09-04
input_data\M_11_D10.txt, 2520 , 2016-09-04
input_data\M_11_D100.txt, 250200 , 2016-09-04
input_data\M_11_D30.txt, 22560 , 2016-09-04
input_data\M_11_D50.txt, 62600 , 2016-09-04
input_data\M_12_D10.txt, 2520 , 2016-09-04
input_data\M_12_D100.txt, 250200 , 2016-09-04
input_data\M_12_D30.txt, 22560 , 2016-09-04
input_data\M_12_D50.txt, 62600 , 2016-09-04
input_data\M_13_D10.txt, 2520 , 2016-09-04
input_data\M_13_D100.txt, 250200 , 2016-09-04
input_data\M_13_D30.txt, 22560 , 2016-09-04
input_data\M_13_D50.txt, 62600 , 2016-09-04
input_data\M_14_D10.txt, 2520 , 2016-09-04
input_data\M_14_D100.txt, 250200 , 2016-09-04
input_data\M_14_D30.txt, 22560 , 2016-09-04
input_data\M_14_D50.txt, 62600 , 2016-09-04
input_data\M_15_D10.txt, 2520 , 2016-09-04
input_data\M_15_D100.txt, 250200 , 2016-09-04
input_data\M_15_D30.txt, 22560 , 2016-09-04
input_data\M_15_D50.txt, 62600 , 2016-09-04
input_data\M_16_D10.txt, 2520 , 2016-09-04
input_data\M_16_D100.txt, 250200 , 2016-09-04
input_data\M_16_D30.txt, 22560 , 2016-09-04
input_data\M_16_D50.txt, 62600 , 2016-09-04
input_data\M_17_D10.txt, 2520 , 2016-09-04
input_data\M_17_D100.txt, 250200 , 2016-09-04
input_data\M_17_D30.txt, 22560 , 2016-09-04
input_data\M_17_D50.txt, 62600 , 2016-09-04
input_data\M_18_D10.txt, 2520 , 2016-09-04
input_data\M_18_D100.txt, 250200 , 2016-09-04
input_data\M_18_D30.txt, 22560 , 2016-09-04
input_data\M_18_D50.txt, 62600 , 2016-09-04
input_data\M_19_D10.txt, 2520 , 2016-09-04
input_data\M_19_D100.txt, 250200 , 2016-09-04
input_data\M_19_D30.txt, 22560 , 2016-09-04
input_data\M_19_D50.txt, 62600 , 2016-09-04
input_data\M_1_D10.txt, 2520 , 2016-09-04
input_data\M_1_D100.txt, 250200 , 2016-09-04
input_data\M_1_D2.txt, 104 , 2016-09-04
input_data\M_1_D20.txt, 10040 , 2016-09-04
input_data\M_1_D30.txt, 22560 , 2016-09-04
input_data\M_1_D50.txt, 62600 , 2016-09-04
input_data\M_20_D10.txt, 2520 , 2016-09-04
input_data\M_20_D100.txt, 250200 , 2016-09-09
input_data\M_20_D20.txt, 10040 , 2016-09-04
input_data\M_20_D30.txt, 22560 , 2016-09-04
input_data\M_20_D50.txt, 62600 , 2016-09-04
input_data\M_21_D10.txt, 25200 , 2016-09-04
input_data\M_21_D100.txt, 2502000 , 2016-09-04
input_data\M_21_D2.txt, 832 , 2016-09-04
input_data\M_21_D20.txt, 100400 , 2016-09-04
input_data\M_21_D30.txt, 225600 , 2016-09-04
input_data\M_21_D50.txt, 626000 , 2016-09-04
input_data\M_22_D10.txt, 25200 , 2016-09-04
input_data\M_22_D100.txt, 2502000 , 2016-09-04
input_data\M_22_D2.txt, 832 , 2016-09-04
input_data\M_22_D20.txt, 100400 , 2016-09-04
input_data\M_22_D30.txt, 225600 , 2016-09-04
input_data\M_22_D50.txt, 626000 , 2016-09-04
input_data\M_23_D10.txt, 25200 , 2016-09-04
input_data\M_23_D100.txt, 2502000 , 2016-09-04
input_data\M_23_D2.txt, 832 , 2016-09-04
input_data\M_23_D20.txt, 100400 , 2016-09-04
input_data\M_23_D30.txt, 225600 , 2016-09-04
input_data\M_23_D50.txt, 626000 , 2016-09-04
input_data\M_24_D10.txt, 25200 , 2016-09-04
input_data\M_24_D100.txt, 2502000 , 2016-09-04
input_data\M_24_D2.txt, 832 , 2016-09-04
input_data\M_24_D20.txt, 100400 , 2016-09-04
input_data\M_24_D30.txt, 225600 , 2016-09-04
input_data\M_24_D50.txt, 626000 , 2016-09-04
input_data\M_25_D10.txt, 25200 , 2016-09-04
input_data\M_25_D100.txt, 2502000 , 2016-09-04
input_data\M_25_D2.txt, 832 , 2016-09-04
input_data\M_25_D20.txt, 100400 , 2016-09-04
input_data\M_25_D30.txt, 225600 , 2016-09-04
input_data\M_25_D50.txt, 626000 , 2016-09-04
input_data\M_26_D10.txt, 25200 , 2016-09-04
input_data\M_26_D100.txt, 2502000 , 2016-09-04
input_data\M_26_D2.txt, 832 , 2016-09-04
input_data\M_26_D20.txt, 100400 , 2016-09-04
input_data\M_26_D30.txt, 225600 , 2016-09-04
input_data\M_26_D50.txt, 626000 , 2016-09-04
input_data\M_27_D10.txt, 25200 , 2016-09-04
input_data\M_27_D100.txt, 2502000 , 2016-09-04
input_data\M_27_D2.txt, 832 , 2016-09-04
input_data\M_27_D20.txt, 100400 , 2016-09-04
input_data\M_27_D30.txt, 225600 , 2016-09-04
input_data\M_27_D50.txt, 626000 , 2016-09-04
input_data\M_28_D10.txt, 25200 , 2016-09-04
input_data\M_28_D100.txt, 2502000 , 2016-09-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 原BBO程序包
    能实现原生BBO算法,以及与其他进化算法进行对比(The native BBO algorithm can be implemented and compared with other evolutionary algorithms)
    2021-04-23 14:18:47下载
    积分:1
  • 基于子区域的粒子群优研究_曾嘉俊
    基于子区域的粒子群优化算法研究,粒子群算法是进化算法的一种,多用于路径规划等问题(Subregion-based Particle Swarm Optimization)
    2020-06-18 22:20:02下载
    积分:1
  • 求解多目标问题,业内最经典的多目标之一 NSGA-II
    求解多目标问题,业内最经典的多目标算法之一(to solve multi-object problem)
    2020-06-25 06:40:01下载
    积分:1
  • 基于子区域的粒子群优研究_曾嘉俊
    说明:  基于子区域的粒子群优化算法研究,粒子群算法是进化算法的一种,多用于路径规划等问题(Subregion-based Particle Swarm Optimization)
    2020-06-18 22:20:02下载
    积分:1
  • bayes-LSSVM
    说明:  贝叶斯算法优化了LSSVM的算例,算例中有贝叶斯算法优化,相对比较少见的优化。(Bayesian algorithm optimizes LSSVM examples)
    2019-06-18 10:08:48下载
    积分:1
  • CodeF1(解压密码见源链接)
    说明:  能够规划三维环境下的最优路径,能够满足多约束条件的目标规划(optimal path planning in three-dimensional enviroment)
    2019-09-20 12:49:31下载
    积分:1
  • FJSP-Dynamic-master
    解决车间资源分配的动态调度问题,采用遗传算法(Solving the dynamic scheduling problem of workshop resource allocation, using genetic algorithm)
    2020-06-16 11:20:02下载
    积分:1
  • FA_yangxinshe
    标准萤火虫算法,程序运行稳定,可以自测!!!!!!!(Standard firefly algorithm, the program runs stably and can be self-tested! ! ! ! ! ! !)
    2019-01-27 16:46:15下载
    积分:1
  • flowshop-master(GA)
    说明:  利用遗传算法求解柔性车间调度问题,采用Python编程实现(Using Genetic Algorithm to Solve Flexible Workshop Scheduling Problem)
    2020-07-01 20:20:01下载
    积分:1
  • BAS在3D路径规划中的应用
    说明:  天牛须BAS在3D路径规划中的应用,天牛须BAS是新型算法,求解速度快,算法代码简单。(The application of Longhorn whisker BAS in 3D path planning, Longhorn whisker BAS is a new algorithm with fast solving speed and simple algorithm code.)
    2021-01-31 19:08:34下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载