登录
首页 » WINDOWS » AdaBoost算法

AdaBoost算法

于 2017-12-23 发布 文件大小:7745KB
0 209
下载积分: 1 下载次数: 17

代码说明:

  用matlab软件,实现adaboost算法。将数据集划分为训练集和测试集,给训练集的数据贴标签,用训练好的模型来测试测试数据的准确度。(Using Matlab to implement the AdaBoost algorithm. The data set is divided into training set and test set to label the data of the training set, and the accuracy of the test data is tested by the trained model.)

文件列表:

adaBoost-master
adaBoost-master\README, 604, 2017-01-03
adaBoost-master\bestLinearClassifier.in, 6705, 2017-01-03
adaBoost-master\classifyExample.m, 1157, 2017-01-03
adaBoost-master\computeIntegralImage.m, 1076, 2017-01-03
adaBoost-master\dataset
adaBoost-master\dataset\TestImages
adaBoost-master\dataset\TestImages\test-0.pgm, 24165, 2017-01-03
adaBoost-master\dataset\TestImages\test-1.pgm, 37690, 2017-01-03
adaBoost-master\dataset\TestImages\test-10.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-100.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-101.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-102.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-103.pgm, 34815, 2017-01-03
adaBoost-master\dataset\TestImages\test-104.pgm, 42043, 2017-01-03
adaBoost-master\dataset\TestImages\test-105.pgm, 37255, 2017-01-03
adaBoost-master\dataset\TestImages\test-106.pgm, 21071, 2017-01-03
adaBoost-master\dataset\TestImages\test-107.pgm, 16655, 2017-01-03
adaBoost-master\dataset\TestImages\test-108.pgm, 39075, 2017-01-03
adaBoost-master\dataset\TestImages\test-109.pgm, 23325, 2017-01-03
adaBoost-master\dataset\TestImages\test-11.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-110.pgm, 39117, 2017-01-03
adaBoost-master\dataset\TestImages\test-111.pgm, 16185, 2017-01-03
adaBoost-master\dataset\TestImages\test-112.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-113.pgm, 30612, 2017-01-03
adaBoost-master\dataset\TestImages\test-114.pgm, 10088, 2017-01-03
adaBoost-master\dataset\TestImages\test-115.pgm, 29902, 2017-01-03
adaBoost-master\dataset\TestImages\test-116.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-117.pgm, 41375, 2017-01-03
adaBoost-master\dataset\TestImages\test-118.pgm, 19335, 2017-01-03
adaBoost-master\dataset\TestImages\test-119.pgm, 9854, 2017-01-03
adaBoost-master\dataset\TestImages\test-12.pgm, 14714, 2017-01-03
adaBoost-master\dataset\TestImages\test-120.pgm, 13314, 2017-01-03
adaBoost-master\dataset\TestImages\test-121.pgm, 21591, 2017-01-03
adaBoost-master\dataset\TestImages\test-122.pgm, 25923, 2017-01-03
adaBoost-master\dataset\TestImages\test-123.pgm, 12302, 2017-01-03
adaBoost-master\dataset\TestImages\test-124.pgm, 18108, 2017-01-03
adaBoost-master\dataset\TestImages\test-125.pgm, 20805, 2017-01-03
adaBoost-master\dataset\TestImages\test-126.pgm, 10639, 2017-01-03
adaBoost-master\dataset\TestImages\test-127.pgm, 17664, 2017-01-03
adaBoost-master\dataset\TestImages\test-128.pgm, 19450, 2017-01-03
adaBoost-master\dataset\TestImages\test-129.pgm, 40731, 2017-01-03
adaBoost-master\dataset\TestImages\test-13.pgm, 50715, 2017-01-03
adaBoost-master\dataset\TestImages\test-130.pgm, 38295, 2017-01-03
adaBoost-master\dataset\TestImages\test-131.pgm, 28923, 2017-01-03
adaBoost-master\dataset\TestImages\test-132.pgm, 52750, 2017-01-03
adaBoost-master\dataset\TestImages\test-133.pgm, 16718, 2017-01-03
adaBoost-master\dataset\TestImages\test-134.pgm, 13294, 2017-01-03
adaBoost-master\dataset\TestImages\test-135.pgm, 22387, 2017-01-03
adaBoost-master\dataset\TestImages\test-136.pgm, 15214, 2017-01-03
adaBoost-master\dataset\TestImages\test-137.pgm, 18195, 2017-01-03
adaBoost-master\dataset\TestImages\test-138.pgm, 13738, 2017-01-03
adaBoost-master\dataset\TestImages\test-139.pgm, 13214, 2017-01-03
adaBoost-master\dataset\TestImages\test-14.pgm, 24315, 2017-01-03
adaBoost-master\dataset\TestImages\test-140.pgm, 23815, 2017-01-03
adaBoost-master\dataset\TestImages\test-141.pgm, 16882, 2017-01-03
adaBoost-master\dataset\TestImages\test-142.pgm, 17834, 2017-01-03
adaBoost-master\dataset\TestImages\test-143.pgm, 27075, 2017-01-03
adaBoost-master\dataset\TestImages\test-144.pgm, 13008, 2017-01-03
adaBoost-master\dataset\TestImages\test-145.pgm, 16075, 2017-01-03
adaBoost-master\dataset\TestImages\test-146.pgm, 19417, 2017-01-03
adaBoost-master\dataset\TestImages\test-147.pgm, 13078, 2017-01-03
adaBoost-master\dataset\TestImages\test-148.pgm, 15211, 2017-01-03
adaBoost-master\dataset\TestImages\test-149.pgm, 14467, 2017-01-03
adaBoost-master\dataset\TestImages\test-15.pgm, 44107, 2017-01-03
adaBoost-master\dataset\TestImages\test-150.pgm, 29499, 2017-01-03
adaBoost-master\dataset\TestImages\test-151.pgm, 12020, 2017-01-03
adaBoost-master\dataset\TestImages\test-152.pgm, 14456, 2017-01-03
adaBoost-master\dataset\TestImages\test-153.pgm, 17752, 2017-01-03
adaBoost-master\dataset\TestImages\test-154.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-155.pgm, 16015, 2017-01-03
adaBoost-master\dataset\TestImages\test-156.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-157.pgm, 15204, 2017-01-03
adaBoost-master\dataset\TestImages\test-158.pgm, 16547, 2017-01-03
adaBoost-master\dataset\TestImages\test-159.pgm, 27485, 2017-01-03
adaBoost-master\dataset\TestImages\test-16.pgm, 24027, 2017-01-03
adaBoost-master\dataset\TestImages\test-160.pgm, 22521, 2017-01-03
adaBoost-master\dataset\TestImages\test-161.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-162.pgm, 17151, 2017-01-03
adaBoost-master\dataset\TestImages\test-163.pgm, 20307, 2017-01-03
adaBoost-master\dataset\TestImages\test-164.pgm, 17915, 2017-01-03
adaBoost-master\dataset\TestImages\test-165.pgm, 37551, 2017-01-03
adaBoost-master\dataset\TestImages\test-166.pgm, 18954, 2017-01-03
adaBoost-master\dataset\TestImages\test-167.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-168.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-169.pgm, 15534, 2017-01-03
adaBoost-master\dataset\TestImages\test-17.pgm, 43755, 2017-01-03
adaBoost-master\dataset\TestImages\test-18.pgm, 63375, 2017-01-03
adaBoost-master\dataset\TestImages\test-19.pgm, 47790, 2017-01-03
adaBoost-master\dataset\TestImages\test-2.pgm, 15764, 2017-01-03
adaBoost-master\dataset\TestImages\test-20.pgm, 16674, 2017-01-03
adaBoost-master\dataset\TestImages\test-21.pgm, 19205, 2017-01-03
adaBoost-master\dataset\TestImages\test-22.pgm, 31505, 2017-01-03
adaBoost-master\dataset\TestImages\test-23.pgm, 22615, 2017-01-03
adaBoost-master\dataset\TestImages\test-24.pgm, 24265, 2017-01-03
adaBoost-master\dataset\TestImages\test-25.pgm, 16845, 2017-01-03
adaBoost-master\dataset\TestImages\test-26.pgm, 38655, 2017-01-03
adaBoost-master\dataset\TestImages\test-27.pgm, 27510, 2017-01-03
adaBoost-master\dataset\TestImages\test-28.pgm, 27037, 2017-01-03
adaBoost-master\dataset\TestImages\test-29.pgm, 22524, 2017-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • carrier
    carrier recovery documentation
    2010-07-04 02:37:07下载
    积分:1
  • mt8888application
    MT8880应用实例合集,总共有十余个例子(MT8880 Application collection, a total of more than ten examples of)
    2010-10-15 09:27:09下载
    积分:1
  • PKMgongzuokongjian
    并联机构工作空间图形可视化,matlab编制的代码,请交流(Parallel Workspace graphical visualization, matlab code is compiled, please exchange)
    2015-05-08 11:52:06下载
    积分:1
  • music
    麦克风阵列信号的music的声源估计,可实现对入射信号的角度估计。(music DOA)
    2012-04-06 10:07:00下载
    积分:1
  • Matlab-PSO-is-applied-to-neuralnet
    粒子群优化算法(PSO)应用于神经网络优化程序。分为无隐含层、一隐含层、二隐含层。运行DemoTrainPSO.m即可(Particle Swarm Optimization (PSO) used neural network optimization program. Divided into no hidden layer, a hidden layer, two hidden layers. You can run DemoTrainPSO.m)
    2013-07-17 19:30:26下载
    积分:1
  • tiltcylinder1d
    利用重力剖面反演水平圆柱的边界及位置,程序抗干扰能力较差,模型计算加入噪音严重影响结果,但可作为算法参考并加以改进。(Tilt-Depth for gravity profile over horizontal cylinder)
    2013-09-17 14:36:56下载
    积分:1
  • S-function
    Matlab中S函数的介绍,很详细,可以用于Simulation仿真。(S functions in Matlab is introduced, very detailed, can be used in the Simulation )
    2015-01-17 11:30:34下载
    积分:1
  • Fresnel
    matlab全息技术中的菲涅尔仿真成像程序。(matlab holography Fresnel simulation imaging procedures.)
    2020-07-02 08:40:01下载
    积分:1
  • newton
    牛顿迭代法用于求解非线性方程组,及求解范围(Newton iterative method for solving nonlinear equations, and solve the range)
    2010-06-27 15:22:16下载
    积分:1
  • IIR_A_FIR_Weiner
    Source code for Adaptive IIR_FIR_Weiner Filter
    2014-11-28 07:15:58下载
    积分:1
  • 696516资源总数
  • 106442会员总数
  • 11今日下载