登录
首页 » WINDOWS » AdaBoost算法

AdaBoost算法

于 2017-12-23 发布 文件大小:7745KB
0 204
下载积分: 1 下载次数: 17

代码说明:

  用matlab软件,实现adaboost算法。将数据集划分为训练集和测试集,给训练集的数据贴标签,用训练好的模型来测试测试数据的准确度。(Using Matlab to implement the AdaBoost algorithm. The data set is divided into training set and test set to label the data of the training set, and the accuracy of the test data is tested by the trained model.)

文件列表:

adaBoost-master
adaBoost-master\README, 604, 2017-01-03
adaBoost-master\bestLinearClassifier.in, 6705, 2017-01-03
adaBoost-master\classifyExample.m, 1157, 2017-01-03
adaBoost-master\computeIntegralImage.m, 1076, 2017-01-03
adaBoost-master\dataset
adaBoost-master\dataset\TestImages
adaBoost-master\dataset\TestImages\test-0.pgm, 24165, 2017-01-03
adaBoost-master\dataset\TestImages\test-1.pgm, 37690, 2017-01-03
adaBoost-master\dataset\TestImages\test-10.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-100.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-101.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-102.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-103.pgm, 34815, 2017-01-03
adaBoost-master\dataset\TestImages\test-104.pgm, 42043, 2017-01-03
adaBoost-master\dataset\TestImages\test-105.pgm, 37255, 2017-01-03
adaBoost-master\dataset\TestImages\test-106.pgm, 21071, 2017-01-03
adaBoost-master\dataset\TestImages\test-107.pgm, 16655, 2017-01-03
adaBoost-master\dataset\TestImages\test-108.pgm, 39075, 2017-01-03
adaBoost-master\dataset\TestImages\test-109.pgm, 23325, 2017-01-03
adaBoost-master\dataset\TestImages\test-11.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-110.pgm, 39117, 2017-01-03
adaBoost-master\dataset\TestImages\test-111.pgm, 16185, 2017-01-03
adaBoost-master\dataset\TestImages\test-112.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-113.pgm, 30612, 2017-01-03
adaBoost-master\dataset\TestImages\test-114.pgm, 10088, 2017-01-03
adaBoost-master\dataset\TestImages\test-115.pgm, 29902, 2017-01-03
adaBoost-master\dataset\TestImages\test-116.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-117.pgm, 41375, 2017-01-03
adaBoost-master\dataset\TestImages\test-118.pgm, 19335, 2017-01-03
adaBoost-master\dataset\TestImages\test-119.pgm, 9854, 2017-01-03
adaBoost-master\dataset\TestImages\test-12.pgm, 14714, 2017-01-03
adaBoost-master\dataset\TestImages\test-120.pgm, 13314, 2017-01-03
adaBoost-master\dataset\TestImages\test-121.pgm, 21591, 2017-01-03
adaBoost-master\dataset\TestImages\test-122.pgm, 25923, 2017-01-03
adaBoost-master\dataset\TestImages\test-123.pgm, 12302, 2017-01-03
adaBoost-master\dataset\TestImages\test-124.pgm, 18108, 2017-01-03
adaBoost-master\dataset\TestImages\test-125.pgm, 20805, 2017-01-03
adaBoost-master\dataset\TestImages\test-126.pgm, 10639, 2017-01-03
adaBoost-master\dataset\TestImages\test-127.pgm, 17664, 2017-01-03
adaBoost-master\dataset\TestImages\test-128.pgm, 19450, 2017-01-03
adaBoost-master\dataset\TestImages\test-129.pgm, 40731, 2017-01-03
adaBoost-master\dataset\TestImages\test-13.pgm, 50715, 2017-01-03
adaBoost-master\dataset\TestImages\test-130.pgm, 38295, 2017-01-03
adaBoost-master\dataset\TestImages\test-131.pgm, 28923, 2017-01-03
adaBoost-master\dataset\TestImages\test-132.pgm, 52750, 2017-01-03
adaBoost-master\dataset\TestImages\test-133.pgm, 16718, 2017-01-03
adaBoost-master\dataset\TestImages\test-134.pgm, 13294, 2017-01-03
adaBoost-master\dataset\TestImages\test-135.pgm, 22387, 2017-01-03
adaBoost-master\dataset\TestImages\test-136.pgm, 15214, 2017-01-03
adaBoost-master\dataset\TestImages\test-137.pgm, 18195, 2017-01-03
adaBoost-master\dataset\TestImages\test-138.pgm, 13738, 2017-01-03
adaBoost-master\dataset\TestImages\test-139.pgm, 13214, 2017-01-03
adaBoost-master\dataset\TestImages\test-14.pgm, 24315, 2017-01-03
adaBoost-master\dataset\TestImages\test-140.pgm, 23815, 2017-01-03
adaBoost-master\dataset\TestImages\test-141.pgm, 16882, 2017-01-03
adaBoost-master\dataset\TestImages\test-142.pgm, 17834, 2017-01-03
adaBoost-master\dataset\TestImages\test-143.pgm, 27075, 2017-01-03
adaBoost-master\dataset\TestImages\test-144.pgm, 13008, 2017-01-03
adaBoost-master\dataset\TestImages\test-145.pgm, 16075, 2017-01-03
adaBoost-master\dataset\TestImages\test-146.pgm, 19417, 2017-01-03
adaBoost-master\dataset\TestImages\test-147.pgm, 13078, 2017-01-03
adaBoost-master\dataset\TestImages\test-148.pgm, 15211, 2017-01-03
adaBoost-master\dataset\TestImages\test-149.pgm, 14467, 2017-01-03
adaBoost-master\dataset\TestImages\test-15.pgm, 44107, 2017-01-03
adaBoost-master\dataset\TestImages\test-150.pgm, 29499, 2017-01-03
adaBoost-master\dataset\TestImages\test-151.pgm, 12020, 2017-01-03
adaBoost-master\dataset\TestImages\test-152.pgm, 14456, 2017-01-03
adaBoost-master\dataset\TestImages\test-153.pgm, 17752, 2017-01-03
adaBoost-master\dataset\TestImages\test-154.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-155.pgm, 16015, 2017-01-03
adaBoost-master\dataset\TestImages\test-156.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-157.pgm, 15204, 2017-01-03
adaBoost-master\dataset\TestImages\test-158.pgm, 16547, 2017-01-03
adaBoost-master\dataset\TestImages\test-159.pgm, 27485, 2017-01-03
adaBoost-master\dataset\TestImages\test-16.pgm, 24027, 2017-01-03
adaBoost-master\dataset\TestImages\test-160.pgm, 22521, 2017-01-03
adaBoost-master\dataset\TestImages\test-161.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-162.pgm, 17151, 2017-01-03
adaBoost-master\dataset\TestImages\test-163.pgm, 20307, 2017-01-03
adaBoost-master\dataset\TestImages\test-164.pgm, 17915, 2017-01-03
adaBoost-master\dataset\TestImages\test-165.pgm, 37551, 2017-01-03
adaBoost-master\dataset\TestImages\test-166.pgm, 18954, 2017-01-03
adaBoost-master\dataset\TestImages\test-167.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-168.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-169.pgm, 15534, 2017-01-03
adaBoost-master\dataset\TestImages\test-17.pgm, 43755, 2017-01-03
adaBoost-master\dataset\TestImages\test-18.pgm, 63375, 2017-01-03
adaBoost-master\dataset\TestImages\test-19.pgm, 47790, 2017-01-03
adaBoost-master\dataset\TestImages\test-2.pgm, 15764, 2017-01-03
adaBoost-master\dataset\TestImages\test-20.pgm, 16674, 2017-01-03
adaBoost-master\dataset\TestImages\test-21.pgm, 19205, 2017-01-03
adaBoost-master\dataset\TestImages\test-22.pgm, 31505, 2017-01-03
adaBoost-master\dataset\TestImages\test-23.pgm, 22615, 2017-01-03
adaBoost-master\dataset\TestImages\test-24.pgm, 24265, 2017-01-03
adaBoost-master\dataset\TestImages\test-25.pgm, 16845, 2017-01-03
adaBoost-master\dataset\TestImages\test-26.pgm, 38655, 2017-01-03
adaBoost-master\dataset\TestImages\test-27.pgm, 27510, 2017-01-03
adaBoost-master\dataset\TestImages\test-28.pgm, 27037, 2017-01-03
adaBoost-master\dataset\TestImages\test-29.pgm, 22524, 2017-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • LVHZ
    心电数据的滤波代码,已经调试通过,可以滤出工频干扰,基线飘移。谢谢合作(ECG data filtering code debugging has been passed, and labor-frequency interference filters, baseline drift. Thank you for your cooperation)
    2007-01-23 14:50:02下载
    积分:1
  • PSK
    2PSK的链路仿真,信号源的产生,PCM编码,调制解调以及加燥(2 psk link simulation signal source, PCM coding and modulation demodulation and dry)
    2015-04-16 09:51:48下载
    积分:1
  • simpson
    his program calculates integral of f(x) using Composite Simpson rule.
    2012-02-15 16:50:32下载
    积分:1
  • code
    说明:  基于非负矩阵分解的语音分离方法,matlab实现(NMF-based speech separation method, matlab implementation)
    2011-04-15 18:59:09下载
    积分:1
  • digital-modulation
    digital modulation PSK et QAM
    2010-11-10 05:15:53下载
    积分:1
  • sng_transtance1
    单负材料的透射谱分析,其中的设置了角度变化从0度到90度。可以发现透射频率随角度的变化规律。(Single-negative materials, the transmission spectrum analysis, which set the angle changed from 0 degrees to 90 degrees. Transmission frequencies can be found with the variation of the angle.)
    2009-09-30 11:08:05下载
    积分:1
  • cuboids_gravity
    This is a m file which can be used for calculating the gravity of cuboids.
    2013-02-27 16:06:16下载
    积分:1
  • Des32ktop
    【谷速软件】matlab毕业编程 半极性的半极坐标图绘制功能 可以作为参考使用,程序是word版本([Valley] matlab graduate programming software speed semi-polar semi-Polar mapping function can be used as a reference, the program is a word version)
    2014-12-16 23:12:49下载
    积分:1
  • LTE_Channel_Model
    3GPP LTE采用的信道仿真模型,目前在3GPP中的提案均采用这一种信道模型,源码是经过国外著名大学和公司联合完成的,极具珍藏价值。(3GPP LTE the channel simulation model, 3 GPP in the proposal were adopted this channel model. OSS was famous overseas universities and companies jointly complete the great commemorative value.)
    2021-04-22 18:38:48下载
    积分:1
  • Matlab-code
    有限元计算程序,三角形线性单元求解泊松方程 包含网格划分,求解,误差分析(Finite element program)
    2011-11-19 20:56:46下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载