登录
首页 » WINDOWS » AdaBoost算法

AdaBoost算法

于 2017-12-23 发布 文件大小:7745KB
0 178
下载积分: 1 下载次数: 17

代码说明:

  用matlab软件,实现adaboost算法。将数据集划分为训练集和测试集,给训练集的数据贴标签,用训练好的模型来测试测试数据的准确度。(Using Matlab to implement the AdaBoost algorithm. The data set is divided into training set and test set to label the data of the training set, and the accuracy of the test data is tested by the trained model.)

文件列表:

adaBoost-master
adaBoost-master\README, 604, 2017-01-03
adaBoost-master\bestLinearClassifier.in, 6705, 2017-01-03
adaBoost-master\classifyExample.m, 1157, 2017-01-03
adaBoost-master\computeIntegralImage.m, 1076, 2017-01-03
adaBoost-master\dataset
adaBoost-master\dataset\TestImages
adaBoost-master\dataset\TestImages\test-0.pgm, 24165, 2017-01-03
adaBoost-master\dataset\TestImages\test-1.pgm, 37690, 2017-01-03
adaBoost-master\dataset\TestImages\test-10.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-100.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-101.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-102.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-103.pgm, 34815, 2017-01-03
adaBoost-master\dataset\TestImages\test-104.pgm, 42043, 2017-01-03
adaBoost-master\dataset\TestImages\test-105.pgm, 37255, 2017-01-03
adaBoost-master\dataset\TestImages\test-106.pgm, 21071, 2017-01-03
adaBoost-master\dataset\TestImages\test-107.pgm, 16655, 2017-01-03
adaBoost-master\dataset\TestImages\test-108.pgm, 39075, 2017-01-03
adaBoost-master\dataset\TestImages\test-109.pgm, 23325, 2017-01-03
adaBoost-master\dataset\TestImages\test-11.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-110.pgm, 39117, 2017-01-03
adaBoost-master\dataset\TestImages\test-111.pgm, 16185, 2017-01-03
adaBoost-master\dataset\TestImages\test-112.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-113.pgm, 30612, 2017-01-03
adaBoost-master\dataset\TestImages\test-114.pgm, 10088, 2017-01-03
adaBoost-master\dataset\TestImages\test-115.pgm, 29902, 2017-01-03
adaBoost-master\dataset\TestImages\test-116.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-117.pgm, 41375, 2017-01-03
adaBoost-master\dataset\TestImages\test-118.pgm, 19335, 2017-01-03
adaBoost-master\dataset\TestImages\test-119.pgm, 9854, 2017-01-03
adaBoost-master\dataset\TestImages\test-12.pgm, 14714, 2017-01-03
adaBoost-master\dataset\TestImages\test-120.pgm, 13314, 2017-01-03
adaBoost-master\dataset\TestImages\test-121.pgm, 21591, 2017-01-03
adaBoost-master\dataset\TestImages\test-122.pgm, 25923, 2017-01-03
adaBoost-master\dataset\TestImages\test-123.pgm, 12302, 2017-01-03
adaBoost-master\dataset\TestImages\test-124.pgm, 18108, 2017-01-03
adaBoost-master\dataset\TestImages\test-125.pgm, 20805, 2017-01-03
adaBoost-master\dataset\TestImages\test-126.pgm, 10639, 2017-01-03
adaBoost-master\dataset\TestImages\test-127.pgm, 17664, 2017-01-03
adaBoost-master\dataset\TestImages\test-128.pgm, 19450, 2017-01-03
adaBoost-master\dataset\TestImages\test-129.pgm, 40731, 2017-01-03
adaBoost-master\dataset\TestImages\test-13.pgm, 50715, 2017-01-03
adaBoost-master\dataset\TestImages\test-130.pgm, 38295, 2017-01-03
adaBoost-master\dataset\TestImages\test-131.pgm, 28923, 2017-01-03
adaBoost-master\dataset\TestImages\test-132.pgm, 52750, 2017-01-03
adaBoost-master\dataset\TestImages\test-133.pgm, 16718, 2017-01-03
adaBoost-master\dataset\TestImages\test-134.pgm, 13294, 2017-01-03
adaBoost-master\dataset\TestImages\test-135.pgm, 22387, 2017-01-03
adaBoost-master\dataset\TestImages\test-136.pgm, 15214, 2017-01-03
adaBoost-master\dataset\TestImages\test-137.pgm, 18195, 2017-01-03
adaBoost-master\dataset\TestImages\test-138.pgm, 13738, 2017-01-03
adaBoost-master\dataset\TestImages\test-139.pgm, 13214, 2017-01-03
adaBoost-master\dataset\TestImages\test-14.pgm, 24315, 2017-01-03
adaBoost-master\dataset\TestImages\test-140.pgm, 23815, 2017-01-03
adaBoost-master\dataset\TestImages\test-141.pgm, 16882, 2017-01-03
adaBoost-master\dataset\TestImages\test-142.pgm, 17834, 2017-01-03
adaBoost-master\dataset\TestImages\test-143.pgm, 27075, 2017-01-03
adaBoost-master\dataset\TestImages\test-144.pgm, 13008, 2017-01-03
adaBoost-master\dataset\TestImages\test-145.pgm, 16075, 2017-01-03
adaBoost-master\dataset\TestImages\test-146.pgm, 19417, 2017-01-03
adaBoost-master\dataset\TestImages\test-147.pgm, 13078, 2017-01-03
adaBoost-master\dataset\TestImages\test-148.pgm, 15211, 2017-01-03
adaBoost-master\dataset\TestImages\test-149.pgm, 14467, 2017-01-03
adaBoost-master\dataset\TestImages\test-15.pgm, 44107, 2017-01-03
adaBoost-master\dataset\TestImages\test-150.pgm, 29499, 2017-01-03
adaBoost-master\dataset\TestImages\test-151.pgm, 12020, 2017-01-03
adaBoost-master\dataset\TestImages\test-152.pgm, 14456, 2017-01-03
adaBoost-master\dataset\TestImages\test-153.pgm, 17752, 2017-01-03
adaBoost-master\dataset\TestImages\test-154.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-155.pgm, 16015, 2017-01-03
adaBoost-master\dataset\TestImages\test-156.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-157.pgm, 15204, 2017-01-03
adaBoost-master\dataset\TestImages\test-158.pgm, 16547, 2017-01-03
adaBoost-master\dataset\TestImages\test-159.pgm, 27485, 2017-01-03
adaBoost-master\dataset\TestImages\test-16.pgm, 24027, 2017-01-03
adaBoost-master\dataset\TestImages\test-160.pgm, 22521, 2017-01-03
adaBoost-master\dataset\TestImages\test-161.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-162.pgm, 17151, 2017-01-03
adaBoost-master\dataset\TestImages\test-163.pgm, 20307, 2017-01-03
adaBoost-master\dataset\TestImages\test-164.pgm, 17915, 2017-01-03
adaBoost-master\dataset\TestImages\test-165.pgm, 37551, 2017-01-03
adaBoost-master\dataset\TestImages\test-166.pgm, 18954, 2017-01-03
adaBoost-master\dataset\TestImages\test-167.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-168.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-169.pgm, 15534, 2017-01-03
adaBoost-master\dataset\TestImages\test-17.pgm, 43755, 2017-01-03
adaBoost-master\dataset\TestImages\test-18.pgm, 63375, 2017-01-03
adaBoost-master\dataset\TestImages\test-19.pgm, 47790, 2017-01-03
adaBoost-master\dataset\TestImages\test-2.pgm, 15764, 2017-01-03
adaBoost-master\dataset\TestImages\test-20.pgm, 16674, 2017-01-03
adaBoost-master\dataset\TestImages\test-21.pgm, 19205, 2017-01-03
adaBoost-master\dataset\TestImages\test-22.pgm, 31505, 2017-01-03
adaBoost-master\dataset\TestImages\test-23.pgm, 22615, 2017-01-03
adaBoost-master\dataset\TestImages\test-24.pgm, 24265, 2017-01-03
adaBoost-master\dataset\TestImages\test-25.pgm, 16845, 2017-01-03
adaBoost-master\dataset\TestImages\test-26.pgm, 38655, 2017-01-03
adaBoost-master\dataset\TestImages\test-27.pgm, 27510, 2017-01-03
adaBoost-master\dataset\TestImages\test-28.pgm, 27037, 2017-01-03
adaBoost-master\dataset\TestImages\test-29.pgm, 22524, 2017-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ParticleEx4
    说明:  粒子滤波,用于对衰退数据的衰退模型的预测,同时也适用于状态跟踪 - 4(particle filter)
    2011-03-11 02:16:27下载
    积分:1
  • Files_Matlab
    code of matlab for GPC
    2012-04-19 12:42:47下载
    积分:1
  • 111
    神经网络控制 徐丽娜 多变量控制系统以及辨识(Neural network control of the the Lina multi-variable control system and identification)
    2012-05-27 10:47:30下载
    积分:1
  • miu_cs10
    matlab程序运行时导入数据文件作为输入参数,模式识别中的bayes判别分析算法,随机调制信号下的模拟ppm。( Import data files as input parameters matlab program is running, Pattern Recognition bayes discriminant analysis algorithm, Random ppm modulated analog signal unde.)
    2017-04-06 18:19:37下载
    积分:1
  • rrrrr
    描述了泊松方程的离散化过程和求解过程。对初学者特别有帮助!(Discrete Poisson equation describes the process and the solution process. Especially helpful for beginners!)
    2010-01-09 14:47:32下载
    积分:1
  • Viterbi_decode
    viterbi decodes function
    2013-01-09 23:12:51下载
    积分:1
  • svm(matlab)
    一种新的函数拟合方法,在某些问题的近似程度上甚至优于径向基插值和Kriging插值方法(A new function fitting method, even better than the approximate extent of some of the issues radial basis interpolation and Kriging interpolation method)
    2012-12-02 23:07:31下载
    积分:1
  • wuxianlouyuchuanshu
    移动通信--无线楼宇数据传输系统的仿真.分析915M的楼宇通信特性,建立楼宇数据通信系统的仿真模型,采用无线收发芯片NRF905,依据其性能参数来判断楼宇内两点之间能否进行数据传输。(mobile communications-- wireless data transmission system building simulation. Analysis of cellphone communications characteristics of the buildings, establish premises data communications system simulation models, the use of wireless transceiver chip NRF905. based on its performance parameters to judge between the two buildings can for data transfer.)
    2006-06-09 00:39:15下载
    积分:1
  • ber
    Script for simulating binary phase shift keyed transmission and reception and compare the simulated and theoretical bit error probability for Coded and Uncoded Modulation using Hamming Codes
    2013-11-16 23:09:11下载
    积分:1
  • brain_project
    MRI brain image segmentation project
    2015-04-10 17:21:22下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载