登录
首页 » WINDOWS » AdaBoost算法

AdaBoost算法

于 2017-12-23 发布 文件大小:7745KB
0 199
下载积分: 1 下载次数: 17

代码说明:

  用matlab软件,实现adaboost算法。将数据集划分为训练集和测试集,给训练集的数据贴标签,用训练好的模型来测试测试数据的准确度。(Using Matlab to implement the AdaBoost algorithm. The data set is divided into training set and test set to label the data of the training set, and the accuracy of the test data is tested by the trained model.)

文件列表:

adaBoost-master
adaBoost-master\README, 604, 2017-01-03
adaBoost-master\bestLinearClassifier.in, 6705, 2017-01-03
adaBoost-master\classifyExample.m, 1157, 2017-01-03
adaBoost-master\computeIntegralImage.m, 1076, 2017-01-03
adaBoost-master\dataset
adaBoost-master\dataset\TestImages
adaBoost-master\dataset\TestImages\test-0.pgm, 24165, 2017-01-03
adaBoost-master\dataset\TestImages\test-1.pgm, 37690, 2017-01-03
adaBoost-master\dataset\TestImages\test-10.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-100.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-101.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-102.pgm, 10850, 2017-01-03
adaBoost-master\dataset\TestImages\test-103.pgm, 34815, 2017-01-03
adaBoost-master\dataset\TestImages\test-104.pgm, 42043, 2017-01-03
adaBoost-master\dataset\TestImages\test-105.pgm, 37255, 2017-01-03
adaBoost-master\dataset\TestImages\test-106.pgm, 21071, 2017-01-03
adaBoost-master\dataset\TestImages\test-107.pgm, 16655, 2017-01-03
adaBoost-master\dataset\TestImages\test-108.pgm, 39075, 2017-01-03
adaBoost-master\dataset\TestImages\test-109.pgm, 23325, 2017-01-03
adaBoost-master\dataset\TestImages\test-11.pgm, 30015, 2017-01-03
adaBoost-master\dataset\TestImages\test-110.pgm, 39117, 2017-01-03
adaBoost-master\dataset\TestImages\test-111.pgm, 16185, 2017-01-03
adaBoost-master\dataset\TestImages\test-112.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-113.pgm, 30612, 2017-01-03
adaBoost-master\dataset\TestImages\test-114.pgm, 10088, 2017-01-03
adaBoost-master\dataset\TestImages\test-115.pgm, 29902, 2017-01-03
adaBoost-master\dataset\TestImages\test-116.pgm, 20840, 2017-01-03
adaBoost-master\dataset\TestImages\test-117.pgm, 41375, 2017-01-03
adaBoost-master\dataset\TestImages\test-118.pgm, 19335, 2017-01-03
adaBoost-master\dataset\TestImages\test-119.pgm, 9854, 2017-01-03
adaBoost-master\dataset\TestImages\test-12.pgm, 14714, 2017-01-03
adaBoost-master\dataset\TestImages\test-120.pgm, 13314, 2017-01-03
adaBoost-master\dataset\TestImages\test-121.pgm, 21591, 2017-01-03
adaBoost-master\dataset\TestImages\test-122.pgm, 25923, 2017-01-03
adaBoost-master\dataset\TestImages\test-123.pgm, 12302, 2017-01-03
adaBoost-master\dataset\TestImages\test-124.pgm, 18108, 2017-01-03
adaBoost-master\dataset\TestImages\test-125.pgm, 20805, 2017-01-03
adaBoost-master\dataset\TestImages\test-126.pgm, 10639, 2017-01-03
adaBoost-master\dataset\TestImages\test-127.pgm, 17664, 2017-01-03
adaBoost-master\dataset\TestImages\test-128.pgm, 19450, 2017-01-03
adaBoost-master\dataset\TestImages\test-129.pgm, 40731, 2017-01-03
adaBoost-master\dataset\TestImages\test-13.pgm, 50715, 2017-01-03
adaBoost-master\dataset\TestImages\test-130.pgm, 38295, 2017-01-03
adaBoost-master\dataset\TestImages\test-131.pgm, 28923, 2017-01-03
adaBoost-master\dataset\TestImages\test-132.pgm, 52750, 2017-01-03
adaBoost-master\dataset\TestImages\test-133.pgm, 16718, 2017-01-03
adaBoost-master\dataset\TestImages\test-134.pgm, 13294, 2017-01-03
adaBoost-master\dataset\TestImages\test-135.pgm, 22387, 2017-01-03
adaBoost-master\dataset\TestImages\test-136.pgm, 15214, 2017-01-03
adaBoost-master\dataset\TestImages\test-137.pgm, 18195, 2017-01-03
adaBoost-master\dataset\TestImages\test-138.pgm, 13738, 2017-01-03
adaBoost-master\dataset\TestImages\test-139.pgm, 13214, 2017-01-03
adaBoost-master\dataset\TestImages\test-14.pgm, 24315, 2017-01-03
adaBoost-master\dataset\TestImages\test-140.pgm, 23815, 2017-01-03
adaBoost-master\dataset\TestImages\test-141.pgm, 16882, 2017-01-03
adaBoost-master\dataset\TestImages\test-142.pgm, 17834, 2017-01-03
adaBoost-master\dataset\TestImages\test-143.pgm, 27075, 2017-01-03
adaBoost-master\dataset\TestImages\test-144.pgm, 13008, 2017-01-03
adaBoost-master\dataset\TestImages\test-145.pgm, 16075, 2017-01-03
adaBoost-master\dataset\TestImages\test-146.pgm, 19417, 2017-01-03
adaBoost-master\dataset\TestImages\test-147.pgm, 13078, 2017-01-03
adaBoost-master\dataset\TestImages\test-148.pgm, 15211, 2017-01-03
adaBoost-master\dataset\TestImages\test-149.pgm, 14467, 2017-01-03
adaBoost-master\dataset\TestImages\test-15.pgm, 44107, 2017-01-03
adaBoost-master\dataset\TestImages\test-150.pgm, 29499, 2017-01-03
adaBoost-master\dataset\TestImages\test-151.pgm, 12020, 2017-01-03
adaBoost-master\dataset\TestImages\test-152.pgm, 14456, 2017-01-03
adaBoost-master\dataset\TestImages\test-153.pgm, 17752, 2017-01-03
adaBoost-master\dataset\TestImages\test-154.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-155.pgm, 16015, 2017-01-03
adaBoost-master\dataset\TestImages\test-156.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-157.pgm, 15204, 2017-01-03
adaBoost-master\dataset\TestImages\test-158.pgm, 16547, 2017-01-03
adaBoost-master\dataset\TestImages\test-159.pgm, 27485, 2017-01-03
adaBoost-master\dataset\TestImages\test-16.pgm, 24027, 2017-01-03
adaBoost-master\dataset\TestImages\test-160.pgm, 22521, 2017-01-03
adaBoost-master\dataset\TestImages\test-161.pgm, 17823, 2017-01-03
adaBoost-master\dataset\TestImages\test-162.pgm, 17151, 2017-01-03
adaBoost-master\dataset\TestImages\test-163.pgm, 20307, 2017-01-03
adaBoost-master\dataset\TestImages\test-164.pgm, 17915, 2017-01-03
adaBoost-master\dataset\TestImages\test-165.pgm, 37551, 2017-01-03
adaBoost-master\dataset\TestImages\test-166.pgm, 18954, 2017-01-03
adaBoost-master\dataset\TestImages\test-167.pgm, 18936, 2017-01-03
adaBoost-master\dataset\TestImages\test-168.pgm, 18915, 2017-01-03
adaBoost-master\dataset\TestImages\test-169.pgm, 15534, 2017-01-03
adaBoost-master\dataset\TestImages\test-17.pgm, 43755, 2017-01-03
adaBoost-master\dataset\TestImages\test-18.pgm, 63375, 2017-01-03
adaBoost-master\dataset\TestImages\test-19.pgm, 47790, 2017-01-03
adaBoost-master\dataset\TestImages\test-2.pgm, 15764, 2017-01-03
adaBoost-master\dataset\TestImages\test-20.pgm, 16674, 2017-01-03
adaBoost-master\dataset\TestImages\test-21.pgm, 19205, 2017-01-03
adaBoost-master\dataset\TestImages\test-22.pgm, 31505, 2017-01-03
adaBoost-master\dataset\TestImages\test-23.pgm, 22615, 2017-01-03
adaBoost-master\dataset\TestImages\test-24.pgm, 24265, 2017-01-03
adaBoost-master\dataset\TestImages\test-25.pgm, 16845, 2017-01-03
adaBoost-master\dataset\TestImages\test-26.pgm, 38655, 2017-01-03
adaBoost-master\dataset\TestImages\test-27.pgm, 27510, 2017-01-03
adaBoost-master\dataset\TestImages\test-28.pgm, 27037, 2017-01-03
adaBoost-master\dataset\TestImages\test-29.pgm, 22524, 2017-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DISCRIMINANTSPARSENONNEGATIVEMATRIXFACTORIZATION
    判别稀疏非负矩阵分解,提出这个新算法,来进行人脸识别,比传统的NMF和一些其他的扩展算法效果好(Sparse non-negative matrix factorization judge proposed the new algorithm for face recognition, than the traditional extension of NMF algorithm and some other good results)
    2010-12-04 17:47:48下载
    积分:1
  • PID_8
    普通PID控制及其扩展算法控制的MATALB仿真程序,内容包含面广.(ordinary PID control algorithm and its expansion of enriching control simulation program, which includes many sectors.)
    2007-03-11 13:55:08下载
    积分:1
  • ofdm
    System ofdm simulink matlab
    2015-10-07 02:41:08下载
    积分:1
  • LS1
    m文件为程序。最小二乘方法的介绍,从我的论文中截取一段出来,说明原理。N为数据的个数(m file for the program. Least squares method is introduced, from the interception of some of my papers out of that principle. N is the number of data)
    2011-04-23 19:54:24下载
    积分:1
  • kalman-filter-vs-its-matlab-code-
    对于初学者来说,有助于理解滤波器的原理还附有简单的matlab编程(For beginners to understand the principles and simple filter matlab programming)
    2011-10-26 10:33:08下载
    积分:1
  • zhendeaini
    matlab编写的真的爱你歌曲,希望有人喜欢(really love you edited by matlab and hope someone will like it)
    2014-12-06 10:13:27下载
    积分:1
  • BasicTime
    You all might have used CTime or CTimeSpan to manipulate the system timer. Here is an article to show you how your system timer works. I will give you an idea of port communications behind the system clock manipulations. Those who are a little biased on hardware and software interfacing practices would find this article of great help.
    2007-10-16 09:37:44下载
    积分:1
  • LearningProgrammingusingMATLAB
    This book is intended for anyone trying to learn the fundamentals of computer programming. The chapters lead the reader through the various steps required for writing a program, introducing the MATLABr constructs in the process. MATLABr is used to teach programming because it has a simple programming environment. It has a low initial overhead which allows the novice programmer to begin programming immediately and allows the users to easily debug their programs. This is especially useful for people who have a “mental block” about computers. Although MATLABr is a high-level language and interactive environment that enables the user to perform computationally intensive tasks faster than with traditional programming languages such as C, C++, and Fortran, the author shows that it can also be used as a programming learning tool for novices. There are a number of exercises at the end of each chapter which should help the users become comfortable with the language.
    2009-09-30 20:32:12下载
    积分:1
  • Interference_MATLAB
    光的干涉数学模型和MATLAB程序,内有详细的说明和解释(Interference of light mathematical model and MATLAB program, there are detailed instructions and explanations)
    2009-11-14 12:28:40下载
    积分:1
  • matlabtoolofpatternrecognition
    matlab的模式识别工具箱,非常有助于开发(matlab tool of pattern recognition)
    2009-07-02 10:41:10下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载