登录
首页 » matlab » sons

sons

于 2020-12-03 发布 文件大小:61703KB
0 163
下载积分: 1 下载次数: 8

代码说明:

  Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.

文件列表:

sons
....\729.wav,198696,2016-06-16
....\afblue.wav,10063918,2003-10-28
....\afdirge.wav,48222766,2003-10-28
....\al19 (1).wav,377260,2016-06-16
....\boing.wav,7948,2005-11-18
....\Compressed-Sensing-master
....\.........................\Compressed Sensing
....\.........................\..................\.DS_Store,10244,2016-07-13
....\.........................\..................\code
....\.........................\..................\....\.DS_Store,6148,2016-07-13
....\.........................\..................\....\approximate message passing
....\.........................\..................\....\...........................\demo.m,510,2016-07-13
....\.........................\..................\....\...........................\largestElement.m,390,2016-07-13
....\.........................\..................\....\...........................\README.txt,268,2016-07-13
....\.........................\..................\....\...........................\README.txt~,194,2016-07-13
....\.........................\..................\....\...........................\reconstructAmp.m,2124,2016-07-13
....\.........................\..................\....\ApproximateMessagePassing.m,737,2016-07-13
....\.........................\..................\....\Bayesian
....\.........................\..................\....\........\Experiment_Effect_Undersampling_ratio.m,4308,2016-07-13
....\.........................\..................\....\Bregman
....\.........................\..................\....\.......\coordl1breg.m,3436,2016-07-13
....\.........................\..................\....\.......\coordl1bregdemo.m,1081,2016-07-13
....\.........................\..................\....\.......\coordlsl1.m,3014,2016-07-13
....\.........................\..................\....\.......\license.txt,1308,2016-07-13
....\.........................\..................\....\.......\readme.txt,408,2016-07-13
....\.........................\..................\....\Camera.tif,65126,2016-07-13
....\.........................\..................\....\chaining pursuit
....\.........................\..................\....\................\ChainingPursuit.m,4539,2016-07-13
....\.........................\..................\....\................\EncodeSignal.m,1453,2016-07-13
....\.........................\..................\....\................\example.m,1261,2016-07-13
....\.........................\..................\....\................\GenerateMeasurements.m,1264,2016-07-13
....\.........................\..................\....\................\readme.rtf,2653,2016-07-13
....\.........................\..................\....\Cleves_Corner_Compressed_Sensing.m,2094,2016-07-13
....\.........................\..................\....\client.m,1560,2016-07-13
....\.........................\..................\....\coordl1breg.m,3436,2016-07-13
....\.........................\..................\....\coordl1bregdemo.m,1081,2016-07-13
....\.........................\..................\....\coordlsl1.m,3014,2016-07-13
....\.........................\..................\....\demo_continuation.m,7046,2016-07-13
....\.........................\..................\....\demo_image_deblur.m,5849,2016-07-13
....\.........................\..................\....\dtmf.m,2715,2016-07-13
....\.........................\..................\....\eta.m,114,2016-07-13
....\.........................\..................\....\etaprime.m,212,2016-07-13
....\.........................\..................\....\failure.m,1363,2016-07-13
....\.........................\..................\....\failure.wav,16508,2016-07-13
....\.........................\..................\....\fft.mat,455168,2016-07-13
....\.........................\..................\....\fftcode.m,455,2016-07-13
....\.........................\..................\....\figures_1_2_3.m,8489,2016-07-13
....\.........................\..................\....\figure_4.m,5225,2016-07-13
....\.........................\..................\....\figure_5.m,5276,2016-07-13
....\.........................\..................\....\figure_6.m,2377,2016-07-13
....\.........................\..................\....\FINAL
....\.........................\..................\....\.....\AMPclient.m,2690,2016-07-13
....\.........................\..................\....\.....\AMPserver.m,1482,2016-07-13
....\.........................\..................\....\.....\basispursuitclient.m,2609,2016-07-13
....\.........................\..................\....\.....\basispursuitserver.m,1568,2016-07-13
....\.........................\..................\....\.....\client.m,1382,2016-07-13
....\.........................\..................\....\.....\eta.m,114,2016-07-13
....\.........................\..................\....\.....\etaprime.m,212,2016-07-13
....\.........................\..................\....\.....\l1_pd.m,3848,2016-07-13
....\.........................\..................\....\.....\largestElement.m,390,2016-07-13
....\.........................\..................\....\.....\OMP.m,3606,2016-07-13
....\.........................\..................\....\.....\OMPclient.m,1968,2016-07-13
....\.........................\..................\....\.....\OMPserver.m,1250,2016-07-13
....\.........................\..................\....\.....\reconstructAmp.m,1121,2016-07-13
....\.........................\..................\....\.....\result_graph.m,757,2016-07-13
....\.........................\..................\....\.....\server.m,1651,2016-07-13
....\.........................\..................\....\FOCUSS
....\.........................\..................\....\......\lmp_re_ls.m,2030,2016-07-13
....\.........................\..................\....\frequencies.txt,121,2016-07-13
....\.........................\..................\....\g.m,1137,2016-07-13
....\.........................\..................\....\GPSR_Basic.m,21922,2016-07-13
....\.........................\..................\....\GPSR_BB.m,23882,2016-07-13
....\.........................\..................\....\greedy
....\.........................\..................\....\......\CoSaMP.m,11081,2016-07-13
....\.........................\..................\....\......\OMP.m,8339,2016-07-13
....\.........................\..................\....\......\test_OMP_and_CoSaMP.m,6379,2016-07-13
....\.........................\..................\....\GroupSparseBox
....\.........................\..................\....\..............\BOMP.m,974,2016-07-13
....\.........................\..................\....\..............\fdrthresh.m,549,2016-07-13
....\.........................\..................\....\..............\GenGroupSparseProblem.m,878,2016-07-13
....\.........................\..................\....\..............\GOMP.m,863,2016-07-13
....\.........................\..................\....\..............\matrix_normalizer.m,106,2016-07-13
....\.........................\..................\....\..............\ReGOMP.m,1683,2016-07-13
....\.........................\..................\....\..............\StGOMP.m,1354,2016-07-13
....\.........................\..................\....\GroupSparseBox.zip,5437,2016-07-13
....\.........................\..................\....\guitar sample
....\.........................\..................\....\.............\guitar.wav,180662,2016-07-13
....\.........................\..................\....\.............\l1eq_pd.m,5371,2016-07-13
....\.........................\..................\....\.............\Untitled.m,1420,2016-07-13
....\.........................\..................\....\.............\wavinout.m,1722,2016-07-13
....\.........................\..................\....\hard_l0_reg.m,11080,2016-07-13
....\.........................\..................\....\iht.m,347,2016-07-13
....\.........................\..................\....\iht_fft.m,1217,2016-07-13
....\.........................\..................\....\immi1.mat,1296396,2016-07-13
....\.........................\..................\....\IST.m,12630,2016-07-13
....\.........................\..................\....\IT
....\.........................\..................\....\..\.DS_Store,15364,2016-07-13
....\.........................\..................\....\..\COPYRIGHT.m,20772,2016-07-13
....\.........................\..................\....\..\Examples

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PID
    说明:  文件中是 MATLAB的模糊 PID控制程序。主要是用一个模糊控制表来进行查询(Paper is MATLAB Fuzzy PID control procedures. Is a fuzzy control query table)
    2009-07-30 18:22:12下载
    积分:1
  • Matlab-90-instances-(GUI)aquot.rar
    说明:  《matlab的90个实例(GUI)》是我学习GUI的宝贵资料,和大家分享(&quot Matlab 90 instances (GUI)&quot is the GUI I learn valuable information, and share)
    2011-03-01 13:26:00下载
    积分:1
  • 18
    说明:  Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
    2014-09-22 20:04:41下载
    积分:1
  • FNN
    伪近邻法确定相空间重构嵌入维数,内涵已生成的典型混沌信号,可以直接使用。(Pseudo-neighbor method to determine the embedding dimension of phase space reconstruction, connotation typical chaotic signal generated can be used directly.)
    2014-12-16 11:06:17下载
    积分:1
  • emd
    可以进行经验模式分解的matlabd源程序(Empirical mode decomposition can be the source matlabd)
    2009-02-24 17:05:47下载
    积分:1
  • 11
    说明:  计算机图形处理试验程序,实现图形的基本操作--图形复原。采用MATLAB语言编写。适合初学者使用。(Computer graphics test procedures, to achieve the basic operation of graphics- graphics recovery. Using MATLAB language. Suitable for beginners.)
    2010-12-19 15:46:22下载
    积分:1
  • ga-pso2011
    GApso2011 仿真与比较,matlab语言开发的,请大家使用!!(GApso2011 simulation and comparison, matlab language development, please use! !)
    2011-06-05 09:14:38下载
    积分:1
  • shiyan5
    已知消息信号为一个长度为8的二进制序列;载波频率为 ,采样频率为4KHz。编程实现一种调制、传输、滤波和解调过程。(Known message signal is a binary sequence with a length of 8 the carrier frequency, the sampling frequency of 4KHz. Programming a modulation, transmission, filtering, and demodulation process.)
    2013-03-05 10:04:08下载
    积分:1
  • bianpojiegousheji3
    本文基于毕肖普法和蒙特卡洛法,利用MATLAB编程软件计算了边坡结构的失效概率Pf和对应可靠指标β.在计算上述Pf和对应β时,考虑了土体三个主要基本参数(重度γ、内摩擦角(Ψ)、粘聚力c)的随机特性.利用MATLAB程序的计算结果表明,随机变量对边坡可靠度的影响与基本随机参数对抗滑反力的贡献大小有关,即,贡献大的基本随机参数,它的随机波动对结构失效概率Pf的影响也较大,反之亦然.另外,基于MATLAB的算例计算结果还表明:边坡结构失效概率Pf对内摩擦角(Ψ)较敏感,而对重度y和粘聚力c次之.其次,当同时考虑三个随机变量的联合波动对Pf的影响时发现,当它们在小范围内随机波动时,其联合特性对Pf的影响较敏感,但当它们在大范围内随机波动时,Pf主要受敏感随机变量的影响,而三个随机变量联合作用对Pf的影响和敏感随机变量(Ψ)单独作用时相差不大.由此可见,在实际边坡工程可靠性分析中,土体内摩擦角起主要作用,不容忽视.(Based Bishop method and Monte Carlo method, using MATLAB programming software to calculate the failure probability Pf and the corresponding slope reliability index β structure in the calculation of the above Pf and the corresponding β, consider the three main basic soil parameters (severe γ internal friction angle (Ψ), cohesion c) of the random nature of calculation results using MATLAB program shows that the influence of random variables on the reliability of the basic random slope parameters against anti- slip contribution to the size of the force , that is , the contribution the basic parameters of large random , random fluctuations which affect the probability of structural failure Pf is also larger , and vice versa addition, the calculation based on MATLAB numerical results also show that : the structure of slope failure probability Pf internal friction angle (Ψ) more sensitive , while severe and cohesion c y followed . Secondly, when taking into account the impact of the joint fl)
    2014-01-10 17:36:46下载
    积分:1
  • lpp bymyself
    lpp降维,给了很多详细的例子的降维程序,并画出图像的2维表示(dimension reduction using lpp)
    2017-08-16 10:25:36下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载