登录
首页 » matlab » SVC

SVC

于 2016-11-27 发布 文件大小:635KB
0 180
下载积分: 1 下载次数: 23

代码说明:

  建立LibSVM预测模型,基于网格算法、粒子群算法、遗传算法优化了模型参数,并由最终模型预测了给定切削参数下零件的粗糙度等级。(Establish LibSVM prediction model, grid-based algorithm, particle swarm optimization, genetic algorithm to optimize the parameters of the model, the final model prediction given by the cutting parameters of parts roughness class.)

文件列表:

SVC
...\libsvm-3.20工具箱
...\.................\htm" target=_blank>COPYRIGHT,1497,2014-11-15
...\.................\FAQ.html,78969,2014-11-15
...\.................\htm" target=_blank>heart_scale,27670,2014-11-15
...\.................\java
...\.................\....\libsvm
...\.................\....\......\svm.java,63803,2014-11-15
...\.................\....\......\svm.m4,63095,2014-11-15
...\.................\....\......\svm_model.java,868,2014-11-15
...\.................\....\......\svm_node.java,115,2014-11-15
...\.................\....\......\svm_parameter.java,1288,2014-11-15
...\.................\....\......\svm_print_interface.java,87,2014-11-15
...\.................\....\......\svm_problem.java,136,2014-11-15
...\.................\....\libsvm.jar,51917,2014-11-15
...\.................\....\Makefile,624,2014-11-15
...\.................\....\svm_predict.java,4950,2014-11-15
...\.................\....\svm_scale.java,8944,2014-11-15
...\.................\....\svm_toy.java,12269,2014-11-15
...\.................\....\svm_train.java,8355,2014-11-15
...\.................\....\test_applet.html,81,2014-11-15
...\.................\Makefile,732,2014-11-15
...\.................\Makefile.win,1084,2014-11-15
...\.................\matlab
...\.................\......\libsvmread.c,4063,2014-11-15
...\.................\......\libsvmwrite.c,2341,2014-11-15
...\.................\......\make.m,777,2014-11-15
...\.................\......\Makefile,1240,2014-11-15
...\.................\......\htm" target=_blank>README,9826,2014-11-15
...\.................\......\svmpredict.c,9823,2014-11-15
...\.................\......\svmtrain.c,11821,2014-11-15
...\.................\......\svm_model_matlab.c,8208,2014-11-15
...\.................\......\svm_model_matlab.h,201,2014-11-15
...\.................\python
...\.................\......\Makefile,32,2014-11-15
...\.................\......\htm" target=_blank>README,11908,2014-11-15
...\.................\......\svm.py,9605,2014-11-15
...\.................\......\svmutil.py,8695,2014-11-15
...\.................\htm" target=_blank>README,28544,2014-11-15
...\.................\svm-predict.c,5536,2014-11-15
...\.................\svm-scale.c,8504,2014-11-15
...\.................\svm-toy
...\.................\.......\gtk
...\.................\.......\...\callbacks.cpp,10308,2014-11-15
...\.................\.......\...\callbacks.h,1765,2014-11-15
...\.................\.......\...\interface.c,6457,2014-11-15
...\.................\.......\...\interface.h,203,2014-11-15
...\.................\.......\...\main.c,398,2014-11-15
...\.................\.......\...\Makefile,573,2014-11-15
...\.................\.......\...\svm-toy.glade,6402,2014-11-15
...\.................\.......\qt
...\.................\.......\..\Makefile,392,2014-11-15
...\.................\.......\..\svm-toy.cpp,9744,2014-11-15
...\.................\.......\windows
...\.................\.......\.......\svm-toy.cpp,11503,2014-11-15
...\.................\svm-train.c,8986,2014-11-15
...\.................\svm.cpp,64702,2014-11-15
...\.................\svm.def,477,2014-11-15
...\.................\svm.h,3382,2014-11-15
...\.................\tools
...\.................\.....\checkdata.py,2479,2014-11-15
...\.................\.....\easy.py,2699,2014-11-15
...\.................\.....\grid.py,15316,2014-11-15
...\.................\.....\htm" target=_blank>README,7033,2014-11-15
...\.................\.....\subset.py,3202,2014-11-15
...\.................\windows
...\.................\.......\libsvm.dll,160256,2014-11-15
...\.................\.......\libsvmread.mexw64,11264,2014-11-15
...\.................\.......\libsvmwrite.mexw64,10240,2014-11-15
...\.................\.......\svm-predict.exe,125952,2014-11-15
...\.................\.......\svm-scale.exe,81408,2014-11-15
...\.................\.......\svm-toy.exe,141312,2014-11-15
...\.................\.......\svm-train.exe,155648,2014-11-15
...\.................\.......\svmpredict.mexw64,25600,2014-11-15
...\.................\.......\svmtrain.mexw64,64000,2014-11-15
...\Matlab辅助函数文件
...\..................\ClassResult.m,2087,2015-07-10
...\..................\gaSVMcgForClass.m,3272,2015-07-10
...\..................\psoSVMcgForClass.m,5222,2015-07-10
...\..................\scaleForSVM.m,540,2015-07-10
...\..................\SVMcgForClass.m,2180,2015-07-10
...\分类模型源程序
...\..............\data.mat,489,2015-07-12
...\..............\final_Classification_model.m,4412,2015-07-10
...\..............\initial_Classification_model.m,2170,2015-07-09
...\参数优化源程序
...\..............\GA_For_cg.m,2302,2015-07-10
...\..............\PSO_For_cg.m,2100,2015-07-10
...\..............\WangGe_For_cg.m,2571,2015-07-10
...\封装模型
...\........\SVC.m,3714,2015-07-10
...\数据文件
...\........\data.mat,489,2015-07-10
...\........\Data.xlsx,11658,2015-07-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB_Codes_for_Competitive_Learning_Algorithms
    竞争学习的matlab工具箱,其中包含som网络,rpcl聚类等(Competitive learning matlab toolbox, which contains som network, rpcl clustering, etc.)
    2007-10-08 11:10:28下载
    积分:1
  • houghline
    matlab实现hough变换直线提取,不直接用hough算子,应用二值化图像(to achieve a straight line hough transform matlab extraction, does not directly hough operator, the application of binary image)
    2009-06-05 23:28:47下载
    积分:1
  • ktaub
    Mann-Kendall Tau-b非线性函数,用于时间序列分析中计算平均变化趋势。(The Mann-Kendall Tau-b non-parametric function computes a coefficient representing strength and direction of a trend for equally spaced data. While you do not need the Statistics Toolbox to compute Taub, you do need it to test for significance. This function will compute Tau-b (now tau-a as well), significance (and the various supporting statistics), and also a non-parametric slope method: Sens Method. )
    2011-05-25 17:03:47下载
    积分:1
  • LMSAlgorithmDemo
    LMS 最小军方误差算法仿真 可用于人工神经网络和自适应滤波(military smallest error LMS algorithm can be used for simulation of artificial neural networks and adaptive filtering)
    2007-04-10 14:35:36下载
    积分:1
  • Newton
    牛顿迭代法求无约束一维极值问题的速度相当快,而且还有一个好处就是能高度逼近最优值。(Newton iteration method for one-dimensional unconstrained extremum problem very fast, but there is a benefit that can be highly close to the optimal value.)
    2013-09-08 15:10:32下载
    积分:1
  • B_ESPRIT_MIMO
    Beamspace ESPRIT方法在MIMO雷达角度估计中是实现,有仿真后的结果对比(Beamspace ESPRIT angle estimation method in MIMO radar is realized, after the simulation results comparison)
    2020-11-14 10:49:42下载
    积分:1
  • time_delay
    时延估计和波束形成方法,在声源跟踪方面有用(Time delay estimation and beamforming methods, useful for tracking the sound source)
    2010-08-24 00:06:47下载
    积分:1
  • dynamicalsystem
    几种常见混沌时间序列matlab实现 1)chua flow 2)duffing flow 3)Rossler flow 4)Lorenz flow 5)ikeda flow 6)Mackey_Glass flow 7)logistic map 8)henon map 9)Quadratic map(二次图) 也欢迎大家提供更多的混沌方程或映射的经典matlab实现。 (several common chaotic time series to achieve a Matlab) chua flow 2) duffin 3 g flow) Rossler flow 4) Lorenz flow 5) ikeda ss w 6) 7 Mackey_Glass flow) Logistic map 8) henon m ap 9) Quadratic map (Second) of welcome we provide more chaotic or mapping equations by the Code Implementation of Matlab.)
    2020-08-18 13:18:21下载
    积分:1
  • zxecf
    matlab中最小二乘法拟合程序,很有用并且很简单的拟合程序(zxecf)
    2010-07-20 11:50:10下载
    积分:1
  • CS4VM
    In this paper, we study cost-sensitive semi-supervised learning where many of the training examples are unlabeled and different misclassification errors are associated with unequal costs. This scenario occurs in many real-world applications. For example, in some disease diagnosis, the cost of erroneously diagnosing a patient as healthy is much higher than that of diagnosing a healthy person as a patient. Also, the acquisition of labeled data requires medical diagnosis which is expensive, while the collection of unlabeled data such as basic health information is much cheaper
    2014-10-21 00:18:03下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载