登录
首页 » matlab » 利用多棵树对样本进行训练 Matlab

利用多棵树对样本进行训练 Matlab

于 2017-01-06 发布 文件大小:441KB
0 164
下载积分: 1 下载次数: 35

代码说明:

  随机森林指的是利用多棵树对样本进行训练并预测的一种分类器,包括两个方面:数据的随机性选取,以及待选特征的随机选取。(Random forest refers to the use of more than one tree to sample the training and prediction of a classifier, including two aspects: random selection of data, as well as the characteristics of random selection.)

文件列表:

20170106RF_Matlab
.................\randomforest-matlab
.................\...................\RF_Class_C
.................\...................\..........\classRF_predict.m,2166,2009-05-17
.................\...................\..........\classRF_train.m,14829,2009-05-17
.................\...................\..........\htm" target=_blank>Compile_Check,856,2009-04-25
.................\...................\..........\compile_linux.m,557,2009-05-17
.................\...................\..........\compile_windows.m,1718,2010-02-06
.................\...................\..........\data
.................\...................\..........\....\twonorm.mat,48856,2009-04-25
.................\...................\..........\....\X_twonorm.txt,96300,2009-04-25
.................\...................\..........\....\Y_twonorm.txt,600,2009-04-25
.................\...................\..........\Makefile,2693,2009-05-17
.................\...................\..........\Makefile.windows,2523,2009-05-17
.................\...................\..........\mexClassRF_predict.mexw32,20992,2010-02-06
.................\...................\..........\mexClassRF_predict.mexw64,26624,2010-02-06
.................\...................\..........\mexClassRF_train.mexw32,32256,2010-02-06
.................\...................\..........\mexClassRF_train.mexw64,46080,2010-02-06
.................\...................\..........\precompiled_rfsub
.................\...................\..........\.................\linux64
.................\...................\..........\.................\win32
.................\...................\..........\.................\.....\rfsub.o,6848,2009-04-25
.................\...................\..........\.................\win64
.................\...................\..........\.................\.....\rfsub.o,9840,2009-04-25
.................\...................\..........\README.txt,3255,2010-02-06
.................\...................\..........\rfsub.o,9840,2009-04-25
.................\...................\..........\src
.................\...................\..........\...\classRF.cpp,33889,2009-05-17
.................\...................\..........\...\classTree.cpp,8947,2009-05-17
.................\...................\..........\...\cokus.cpp,7678,2009-04-25
.................\...................\..........\...\cokus_test.cpp,1189,2009-04-25
.................\...................\..........\...\mex_ClassificationRF_predict.cpp,5225,2009-05-17
.................\...................\..........\...\mex_ClassificationRF_train.cpp,8545,2009-05-17
.................\...................\..........\...\qsort.c,4676,2009-04-25
.................\...................\..........\...\rf.h,5186,2009-05-17
.................\...................\..........\...\rfsub.f,15851,2009-04-25
.................\...................\..........\...\rfutils.cpp,9609,2009-05-17
.................\...................\..........\...\twonorm_C_wrapper.cpp,9865,2009-05-17
.................\...................\..........\tempbuild
.................\...................\..........\test_ClassRF_extensively.m,604,2009-05-17
.................\...................\..........\tutorial_ClassRF.m,10403,2009-05-17
.................\...................\..........\twonorm_C_devcpp.dev,1783,2009-04-25
.................\...................\..........\Version_History.txt,1470,2010-02-06
.................\...................\RF_Reg_C
.................\...................\........\htm" target=_blank>Compile_Check_kcachegrind,611,2009-04-25
.................\...................\........\htm" target=_blank>Compile_Check_memcheck,623,2009-04-25
.................\...................\........\compile_linux.m,952,2009-05-17
.................\...................\........\compile_windows.m,915,2010-02-06
.................\...................\........\data
.................\...................\........\....\diabetes.mat,265664,2009-04-25
.................\...................\........\....\X_diabetes.txt,110942,2009-04-25
.................\...................\........\....\Y_diabetes.txt,11492,2009-04-25
.................\...................\........\diabetes_C_devc.dev,1293,2009-04-25
.................\...................\........\Makefile,1774,2009-05-17
.................\...................\........\mexRF_predict.mexw32,10752,2010-02-06
.................\...................\........\mexRF_predict.mexw64,11264,2010-02-06
.................\...................\........\mexRF_train.mexw32,25600,2010-02-06
.................\...................\........\mexRF_train.mexw64,34304,2010-02-06
.................\...................\........\README.txt,2750,2010-02-06
.................\...................\........\regRF_predict.m,986,2009-05-17
.................\...................\........\regRF_train.m,12863,2009-05-17
.................\...................\........\src
.................\...................\........\...\cokus.cpp,7678,2009-04-25
.................\...................\........\...\cokus_test.cpp,1189,2009-04-25
.................\...................\........\...\diabetes_C_wrapper.cpp,11673,2009-05-17
.................\...................\........\...\mex_regressionRF_predict.cpp,3864,2009-05-17
.................\...................\........\...\mex_regressionRF_train.cpp,12391,2009-05-17
.................\...................\........\...\qsort.c,4676,2009-04-25
.................\...................\........\...\reg_RF.cpp,40291,2009-05-17
.................\...................\........\...\reg_RF.h,560,2009-05-17
.................\...................\........\tempbuild
.................\...................\........\test_RegRF_extensively.m,1364,2009-05-17
.................\...................\........\tutorial_RegRF.m,9505,2009-05-17
.................\...................\........\Version_History.txt,384,2010-02-06
.................\README_Windows_binary.txt,1200,2010-02-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • dlsqrat
    least squares method
    2009-05-15 20:47:41下载
    积分:1
  • yaan_protocol
    一份关于yaan控制协议的说明文档,定义了使用改协议进行控制的具体控制命令结构。(a yaan control protocol on the documentation, changed the definition of the use agreement for the control of the specific structure of control orders.)
    2006-12-11 16:04:33下载
    积分:1
  • param_uu
    parametrize model for modelling elecrical machine
    2012-10-07 23:29:57下载
    积分:1
  • N_R
    电力系统潮流算法,极坐标算法和直角坐标算法(Power flow algorithm, polar coordinates algorithm and Cartesian coordinates algorithm)
    2012-10-28 20:11:12下载
    积分:1
  • fast_marching
    在Juan Cardelino发布的FMM(fast marching methos)2维程序基础上改写的3维程序。并改写成适合复杂速度模型,可用于地震旅行时计算。大模型3d算法在matlab下计算速度较慢,根据源码中的注释很容易改写成c程序。(3D FMM program revised from Juan Cardelino s 2D version. The program can calculate the seismic traveltimes in 3D complex model)
    2021-04-10 10:28:59下载
    积分:1
  • gmcalab_le1.0
    GMCA Toolbox for Denoising, 2005年一篇有关基于MCA去噪的源代码,国外网站转载。(GMCA Toolbox for Denoising, 2005 MCA denoising based on an article on the source code, web reprint abroad.)
    2009-04-07 07:15:06下载
    积分:1
  • p08_boundary_segment_length
    for calculating boundray segment
    2009-12-08 16:10:22下载
    积分:1
  • apf
    有源电力滤波器(APF:Active power filter)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源LC滤波器,只能被动吸收固定频率与大小的谐波而言,APF可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵消负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。(APF:Active power filter))
    2020-06-21 16:00:01下载
    积分:1
  • weidingzhuangtai
    常微分分析稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性,这里举出一些例子和源码(Ordinary differential analysis of the stable and unstable law does not usually need to solve differential equations, and can take advantage of the stability theory of differential equations, directly study the stability of the equilibrium state, give some examples and source)
    2012-09-03 22:38:54下载
    积分:1
  • HengXiang1
    采用自适应均衡中的LMS算法进行仿真,并实用30个抽头的横向均衡器结构,面向新手的Matlab仿真(The LMS adaptive equalization algorithm simulation and practical transverse equalizer structure 30 taps, for novice Matlab simulation)
    2014-02-10 18:10:41下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载