登录
首页 » matlab » 64677726moulation_classification

64677726moulation_classification

于 2020-08-10 发布 文件大小:56KB
0 192
下载积分: 1 下载次数: 16

代码说明:

  基于高阶累积量的调制识别,可自己更改特征(Modulation recognition based on high-order cumulants can change its own characteristics.)

文件列表:

moulation classification\moulation classification\classification rate simulink\ask2.m, 373 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\ask4.m, 310 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\ask8.m, 239 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\A_func.m, 50 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\dif.m, 111 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\f0_func.m, 65 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\fai0_func.m, 461 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\fsk2.m, 532 , 2007-06-14
moulation classification\moulation classification\classification rate simulink\fsk4.m, 661 , 2007-06-01
moulation classification\moulation classification\classification rate simulink\fsk8.m, 1011 , 2007-05-28
moulation classification\moulation classification\classification rate simulink\intrduction.txt, 45 , 2007-10-21
moulation classification\moulation classification\classification rate simulink\judge.m, 1097 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\main.m, 2667 , 2007-10-17
moulation classification\moulation classification\classification rate simulink\M_func.m, 81 , 2007-06-02
moulation classification\moulation classification\classification rate simulink\psk2.m, 321 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\psk4.m, 516 , 2007-06-01
moulation classification\moulation classification\classification rate simulink\psk8.m, 916 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\qam16.m, 1824 , 2007-05-31
moulation classification\moulation classification\classification rate simulink\right recognition rate.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\introduction.txt, 325 , 2007-10-21
moulation classification\moulation classification\key feature simulink\ask2.m, 373 , 2007-05-31
moulation classification\moulation classification\key feature simulink\ask4.m, 310 , 2007-05-31
moulation classification\moulation classification\key feature simulink\ask8.m, 239 , 2007-05-31
moulation classification\moulation classification\key feature simulink\A_func.m, 50 , 2007-06-02
moulation classification\moulation classification\key feature simulink\dif.m, 111 , 2007-06-02
moulation classification\moulation classification\key feature simulink\f0_func.m, 65 , 2007-06-02
moulation classification\moulation classification\key feature simulink\fai0_func.m, 461 , 2007-06-02
moulation classification\moulation classification\key feature simulink\fig.m, 462 , 2007-05-30
moulation classification\moulation classification\key feature simulink\fsk2.m, 532 , 2007-06-14
moulation classification\moulation classification\key feature simulink\fsk4.m, 661 , 2007-06-01
moulation classification\moulation classification\key feature simulink\fsk8.m, 1011 , 2007-05-28
moulation classification\moulation classification\key feature simulink\intrduction.txt, 74 , 2007-10-21
moulation classification\moulation classification\key feature simulink\judge.m, 1097 , 2007-06-02
moulation classification\moulation classification\key feature simulink\M1.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\M1_fig.m, 886 , 2007-10-17
moulation classification\moulation classification\key feature simulink\M1_func.m, 68 , 2007-05-30
moulation classification\moulation classification\key feature simulink\M2.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\M2_fig.m, 560 , 2007-05-31
moulation classification\moulation classification\key feature simulink\M2_func.m, 82 , 2007-05-30
moulation classification\moulation classification\key feature simulink\M3.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\M3_fig.m, 429 , 2007-05-30
moulation classification\moulation classification\key feature simulink\M3_func.m, 96 , 2007-05-30
moulation classification\moulation classification\key feature simulink\main.m, 2667 , 2007-06-21
moulation classification\moulation classification\key feature simulink\Mf1.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\Mf1_fig.m, 1019 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mf1_func.m, 83 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mf2.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\Mf2_fig.m, 709 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mf2_func.m, 100 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mf3.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\Mf3_fig.m, 570 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mf3_func.m, 108 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mp1.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\Mp1_fig.m, 606 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mp1_func.m, 105 , 2007-05-30
moulation classification\moulation classification\key feature simulink\Mp2.bmp, 236278 , 2007-10-17
moulation classification\moulation classification\key feature simulink\Mp2_fig.m, 451 , 2007-05-31
moulation classification\moulation classification\key feature simulink\Mp2_func.m, 113 , 2007-05-30
moulation classification\moulation classification\key feature simulink\M_func.m, 81 , 2007-06-02
moulation classification\moulation classification\key feature simulink\psk2.m, 321 , 2007-05-31
moulation classification\moulation classification\key feature simulink\psk4.m, 516 , 2007-06-01
moulation classification\moulation classification\key feature simulink\psk8.m, 916 , 2007-05-31
moulation classification\moulation classification\key feature simulink\qam16.m, 1824 , 2007-05-31
moulation classification\moulation classification\classification rate simulink, 0 , 2007-10-21
moulation classification\moulation classification\key feature simulink, 0 , 2007-10-21
moulation classification\moulation classification, 0 , 2007-10-21
moulation classification, 0 , 2010-05-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB_GUI
    精通MATLAB_GUI设计,里面是源程序代码(Versed in MATLAB_GUI design, which is the source code)
    2012-05-29 15:57:29下载
    积分:1
  • HOUGHTRANSITION
    Matlab编写的Hough算法,自己运行过的,可以直接使用...(This is a HOUGH Algorithm in Matlab. It can be run successfully.)
    2013-03-11 17:50:14下载
    积分:1
  • MouHaiWei
    基于牟老师的关于三层光纤的SPR反射率计算公式的图像处理部分,自己设计的,随波长变化反射率变化曲线(The formula based on Mou teacher SPR reflectance of about three fiber optic image processing section of their own design, varies with wavelength reflectance curve)
    2021-04-22 22:28:48下载
    积分:1
  • prepro_sig_sub
    实现eemd程序,可以进行内禀模态函数的分解。(eemd)
    2010-11-29 09:59:11下载
    积分:1
  • matlab
    说明:  matlab课程设计 任意信号卷积的运算,并且绘制图象.(matlab course design any signal convolution operation, and draw images.)
    2011-03-28 16:41:58下载
    积分:1
  • chanshengxulie
    这是在MATLAB环境下产生ppm比特流的程序,提供了一个输入信号。(This ppm bitstream procedures in the MATLAB environment, and provides an input signal.)
    2012-05-18 23:55:13下载
    积分:1
  • bpsk1
    本程序是自己写的,在瑞丽衰落信号下的BPSK仿真,已经经过试验成功(This program is written in their own, in Ruili fading BPSK simulation signal, has been successfully tested)
    2013-12-17 16:43:07下载
    积分:1
  • fig3_5
    when SNR is high , 1st sample estimator provides good estimate of A. it has no noise effect . so we don’t need averaging effect to reduce noise when SNR is high. However variance is still low in sample mean estimator which shows that in reality ,sample mean is good estimator than 1st sample estimator. So, for high SNR, we do not need to reduce the effect of noise by averaging. or we can say that for high SNR let say >1000 , 1st sample estimator got reduced noise. But as for as variance is concerned , the sample mean has low variance for high SNR as well.
    2013-05-02 02:45:33下载
    积分:1
  • palmidpro
    this code palm print identification
    2013-12-25 01:23:19下载
    积分:1
  • dang2
    在matlab界面中显示坐标曲线,运用matlab中guide的axes控件编程。(In matlab interface to display the coordinates curves guide the use of axes in matlab programming controls.)
    2008-03-29 15:03:38下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载