登录
首页 » matlab » 多任务深度学习改进版

多任务深度学习改进版

于 2018-11-17 发布 文件大小:14428KB
0 212
下载积分: 1 下载次数: 7

代码说明:

  这个程序实现了多任务的深度学习,可以提高训练的收敛速度(Multi-task deep learning)

文件列表:

多任务深度学习改进版\Calculate_Bin_Num.m, 150 , 2018-07-27
多任务深度学习改进版\Check_error.m, 1810 , 2018-07-27
多任务深度学习改进版\Construct_start_end_tab.m, 593 , 2018-07-27
多任务深度学习改进版\dbnunfoldtonn1.m, 534 , 2018-07-27
多任务深度学习改进版\dbnunfoldtonn2.m, 447 , 2018-07-27
多任务深度学习改进版\dbnunfoldtonn3.m, 482 , 2018-08-04
多任务深度学习改进版\DBN_SFC.m, 2972 , 2018-09-12
多任务深度学习改进版\Decrease_zeros.m, 639 , 2018-07-27
多任务深度学习改进版\denose.m, 862 , 2018-07-27
多任务深度学习改进版\Equal.m, 1668 , 2018-07-27
多任务深度学习改进版\Load_Data_Set.m, 689 , 2018-09-10
多任务深度学习改进版\mlt_nnff.m, 3320 , 2018-09-03
多任务深度学习改进版\mlt_nntrain.m, 4073 , 2018-08-04
多任务深度学习改进版\mtl_dbntrain.m, 738 , 2018-08-04
多任务深度学习改进版\mtl_nnbp.m, 5478 , 2018-08-04
多任务深度学习改进版\mtl_nneval.m, 1447 , 2018-08-04
多任务深度学习改进版\mtl_nnpredict.m, 788 , 2018-08-04
多任务深度学习改进版\mtl_nntest.m, 536 , 2018-08-04
多任务深度学习改进版\mulitask_DBN.m, 4658 , 2018-09-06
多任务深度学习改进版\nnsetup1.m, 2622 , 2018-07-27
多任务深度学习改进版\nnsetup2.m, 1871 , 2018-08-03
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\.travis.yml, 249 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caeapplygrads.m, 1219 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caebbp.m, 917 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caebp.m, 1011 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caedown.m, 259 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caeexamples.m, 754 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caenumgradcheck.m, 3618 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caesdlm.m, 845 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caetrain.m, 1148 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\caeup.m, 489 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\max3d.m, 173 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\scaesetup.m, 1937 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CAE\scaetrain.m, 270 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnnapplygrads.m, 575 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnnbp.m, 2141 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnnff.m, 1774 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnnsetup.m, 2020 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnntest.m, 193 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CNN\cnntrain.m, 845 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\CONTRIBUTING.md, 544 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\create_readme.sh, 744 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\data\mnist_uint8.mat, 14735220 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\dbnsetup.m, 557 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\dbntrain.m, 232 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\rbmdown.m, 90 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\rbmtrain.m, 1401 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\DBN\rbmup.m, 89 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\LICENSE, 1313 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnapplygrads.m, 628 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnbp.m, 1638 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnchecknumgrad.m, 704 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nneval.m, 811 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnff.m, 1904 , 2017-12-20
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnpredict.m, 357 , 2017-12-27
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnsetup.m, 1840 , 2017-12-28
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nntest.m, 202 , 2017-07-31
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nntrain.m, 2414 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\NN\nnupdatefigures.m, 1858 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\README.md, 8861 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\README_header.md, 2244 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\REFS.md, 950 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\SAE\saesetup.m, 132 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\SAE\saetrain.m, 308 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\runalltests.m, 165 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_example_CNN.m, 981 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_example_DBN.m, 1031 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_example_NN.m, 3247 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_example_SAE.m, 934 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\allcomb.m, 2618 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\expand.m, 1958 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\flicker.m, 208 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\flipall.m, 80 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\fliplrf.m, 543 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\flipudf.m, 576 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\im2patches.m, 313 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\isOctave.m, 108 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\makeLMfilters.m, 1895 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\myOctaveVersion.m, 169 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\normalize.m, 97 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\patches2im.m, 242 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\randcorr.m, 283 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\randp.m, 2083 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\rnd.m, 49 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\sigm.m, 48 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\sigmrnd.m, 126 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\softmax.m, 256 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\tanh_opt.m, 54 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\visualize.m, 1072 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\whiten.m, 183 , 2015-12-01
多任务深度学习改进版\rasmusbergpalm-DeepLearnToolbox-5df2801\rasmusbergpalm-DeepLearnToolbox-5df2801\util\zscore.m, 137 , 2015-12-01
多任务深度学习改进版\spilt_train_x.m, 377 , 2018-08-04
多任务深度学习改进版\tri_nnapplygrads.m, 2231 , 2018-07-27
多任务深度学习改进版\测试程序\ceshi_nnff.asv, 2894 , 2018-09-13
多任务深度学习改进版\测试程序\ceshi_nnff.m, 3404 , 2018-09-13
多任务深度学习改进版\测试程序\fenzushuju_andian.asv, 577 , 2018-09-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • log_tool
    C语言使用Excel库分析日志文件,可自行修改接口,兼容性好(Using Excel Library to Analyse Log Files in C Language)
    2020-06-22 19:00:02下载
    积分:1
  • 2004
    说明:  哈尔滨工业大学通信工程电子信息工程考研复试题(2004).rar(Communication Engineering, Harbin Institute of Technology Electronics and Information Engineering Kaoyan complex questions (2004). Rar)
    2011-03-19 14:30:43下载
    积分:1
  • le_cable_replacement_client
    BT121 LE client application
    2017-09-12 17:27:47下载
    积分:1
  • 2303HX / 2303X开发工具,下载pl2303系列EEPROM。
    该工具是pl2303hx/pl2303x的开发工具,用以下载pl2303系列产品中的eeprom.-pl2303hx/pl2303x development tools, to download pl2303 series of EEPROM.
    2022-03-25 06:08:37下载
    积分:1
  • FastICA_25
    说明:  独立成分分析(Independent Component Analysis,ICA)是近年来提出的非常有效的数据分析工具,它主要用来从混合数据中提取出原始的独立信号。它作为信号分离的一种有效方法而受到广泛的关注。近几年出现了一种快速ICA算法(Fast ICA),该算法是基于定点递推算法得到的,它对任何类型的数据都适用,同时它的存在对运用ICA分析高维的数据成为可能。又称固定点(Fixed-Point)算法,是由芬兰赫尔辛基大学Hyvärinen等人提出来的。是一种快速寻优迭代算法,与普通的神经网络算法不同的是这种算法采用了批处理的方式,即在每一步迭代中有大量的样本数据参与运算。但是从分布式并行处理的观点看该算法仍可称之为是一种神经网络算法。(Independent component analysis (ICA) is a very effective data analysis tool proposed in recent years. It is mainly used to extract the original independent signals from the mixed data. As an effective method of signal separation, it has been widely concerned. In recent years, a fast ICA algorithm (fast ICA) has appeared. The algorithm is based on the fixed-point recursive algorithm, which is applicable to any type of data. At the same time, its existence makes it possible to use ICA to analyze high-dimensional data. Also known as fixed-point algorithm, it was proposed by HYV & auml; rinen et al. It is a fast optimization iterative algorithm. Different from the common neural network algorithm, this algorithm adopts the way of batch processing, that is, there are a large number of sample data in each iteration. But from the point of view of distributed parallel processing, this algorithm can still be called a neural network algorithm.)
    2020-05-22 14:51:07下载
    积分:1
  • 陈明计先生写的SMALL RTOS51 smallR_TOS51_BOOK
    本书:是陈明计先生写的SMALL RTOS51。格式为PDF。该书详细分析了RTOS51的编写过程。非常详细的流程图。只要有一定的基础,就能够快速掌握RTOS编程思路。(This book: It is written by Mr. Chen Mingji SMALL RTOS51. Format PDF. RTOS51 book is a detailed analysis of the preparation process. Very detailed flow chart. As long as there is a foundation, will be able to quickly grasp the idea of RTOS programming.)
    2020-06-26 01:20:02下载
    积分:1
  • 海浪模拟
    基于matlab仿真所建立的二维海浪模型,希望可以帮助到大家(Two dimensional sea wave model)
    2018-02-10 10:13:24下载
    积分:1
  • IEEE33
    IEEE33节点仿真模型整体模型介绍,应用在电力系统及其自动化仿真模型(Introduction of IEEE33 node simulation model and its application in power system and automation simulation model)
    2021-04-12 20:48:57下载
    积分:1
  • 小飞机3维显示
    小飞机带姿态调整,使用labview3D显示,看起来好玩。(Small aircraft with posture adjustment, using labview3D display, it looks fun.)
    2018-05-04 16:58:08下载
    积分:1
  • zip
    三维坐标系中随机生成很多孔隙用来模拟试件中孔隙分布规律(Random generation of many pores in three-dimensional coordinate system)
    2020-11-24 21:29:34下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载