登录
首页 » matlab » 函数rastriginPSO优化程序

函数rastriginPSO优化程序

于 2018-11-21 发布 文件大小:1KB
0 153
下载积分: 1 下载次数: 5

代码说明:

  测试rastrigin 函数PSO智能算法优化程序(rastrigin PSO)

文件列表:

函数rastriginPSO优化程序\PSO.m, 1800 , 2013-10-19
函数rastriginPSO优化程序\rastrigin.m, 79 , 2013-10-19
函数rastriginPSO优化程序, 0 , 2018-11-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • orl_pca
    从前用matlab编的人脸识别的特征提取以及识别程序,希望有用(The previous series of face recognition using matlab feature extraction and identification procedures, seek to help)
    2007-07-11 14:28:22下载
    积分:1
  • Cognitive_Radio
    cognitive radio system matlab simulation
    2009-05-04 11:49:36下载
    积分:1
  • Root-MUSIC-algorithm-source
    求根MUSIC算法源程序,实现波达方向估计(Root MUSIC algorithm source code, direction of arrival estimation)
    2013-05-06 21:23:50下载
    积分:1
  • pso-SVM
    粒子群优化算法pso优化支持向量机svm(Particle swarm optimization algorithm pso optimization support vector machine svm)
    2020-11-17 14:39:39下载
    积分:1
  • matlab_algrithm_tuihuo
    matlab退火算法工具箱,功能非常强大,可以大大方便数学建模(annealing algorithm matlab toolbox, very powerful, can greatly facilitate the mathematical modeling)
    2011-05-04 17:15:12下载
    积分:1
  • locthresh
    this program to help you to Find the local threshold of an image
    2010-09-29 14:39:26下载
    积分:1
  • projekt
    Simulation of SAR radar echo. Posibility to change sampling time, number and place of reflecting points and position of radar platform.
    2010-03-01 19:06:50下载
    积分:1
  • hodochrones
    autocorrelation matlab file
    2011-04-21 06:25:01下载
    积分:1
  • mitmatlab
    mitmatlab工具箱,有各种机器学习的算法(mitmatlab toolbox, there are a variety of machine learning algorithm)
    2010-05-15 19:19:29下载
    积分:1
  • WindyGridWorldQLearning
    Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins (1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed each iteration, rather than just one.
    2013-04-19 14:23:35下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载