登录
首页 » matlab » Deep learning_CNN DBN RBM

Deep learning_CNN DBN RBM

于 2018-12-18 发布 文件大小:14409KB
0 198
下载积分: 1 下载次数: 48

代码说明:

  运用深度学习模型实现图像的分类,主要包括卷积神经网络CNN和深信度网络DBN(Classification of images using deep learning model includes convolutional neural network CNN and belief network DBN.)

文件列表:

深度学习CNN%2BDBN%2BRBM\.travis.yml, 249 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeapplygrads.m, 1219 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caebbp.m, 917 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caebp.m, 1011 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caedown.m, 259 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeexamples.m, 754 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caenumgradcheck.m, 3618 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caesdlm.m, 845 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caetrain.m, 1148 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeup.m, 489 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\max3d.m, 173 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\scaesetup.m, 1937 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\scaetrain.m, 270 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnapplygrads.m, 575 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnbp.m, 2141 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnff.m, 1774 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnsetup.m, 2020 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnntest.m, 193 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnntrain.m, 845 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CONTRIBUTING.md, 544 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\create_readme.sh, 744 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\data\mnist_uint8.mat, 14735220 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbnsetup.m, 557 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbntrain.m, 232 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmdown.m, 90 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmtrain.m, 1401 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmup.m, 89 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\LICENSE, 1313 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnapplygrads.m, 628 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnbp.m, 1638 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnchecknumgrad.m, 704 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nneval.m, 811 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnff.m, 1849 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnpredict.m, 192 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnsetup.m, 1844 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nntest.m, 184 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nntrain.m, 2414 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnupdatefigures.m, 1858 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\README.md, 8861 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\README_header.md, 2244 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\REFS.md, 950 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE\saesetup.m, 132 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE\saetrain.m, 308 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\runalltests.m, 165 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_CNN.m, 981 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_DBN.m, 1031 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_NN.m, 3247 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_SAE.m, 934 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\allcomb.m, 2618 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\expand.m, 1958 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flicker.m, 208 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flipall.m, 80 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\fliplrf.m, 543 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flipudf.m, 576 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\im2patches.m, 313 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\isOctave.m, 108 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\makeLMfilters.m, 1895 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\myOctaveVersion.m, 169 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\normalize.m, 97 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\patches2im.m, 242 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\randcorr.m, 283 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\randp.m, 2083 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\rnd.m, 49 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\sigm.m, 48 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\sigmrnd.m, 126 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\softmax.m, 256 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\tanh_opt.m, 54 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\visualize.m, 1072 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\whiten.m, 183 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\zscore.m, 137 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\data, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM, 0 , 2015-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • few-shot-gnn-master
    通过few_shot少量监督信息来训练图神经网络,达到分类的效果(Training Graph Neural Network for Classification)
    2020-06-16 01:00:01下载
    积分:1
  • 智能家居系统
    用户注册 登录 修改密码 基础家电控制(User registration, login, password modification, basic household appliances control)
    2020-11-03 19:59:51下载
    积分:1
  • CroppedYale
    通过神经网络利用matlab和python实现人脸识别(Face recognition using MATLAB and python through neural network)
    2017-11-29 00:27:18下载
    积分:1
  • (论文+simulink)模型
    说明:  参照文献搭建了永磁同步电机直接转矩控制模型; 适合做毕业设计时参考,也非常适合新手学习; 可在该模型的基础上,根据自己的研究需要添加卡尔曼滤波、预测控制、占空比直接转矩等。(The direct torque control model of permanent magnet synchronous motor (PMSM) is built according to the literature; Suitable for graduation design reference, also very suitable for novice learning; On the basis of this model, Kalman filter, predictive control, duty cycle and direct torque can be added according to our own research needs)
    2021-01-12 11:11:12下载
    积分:1
  • Euler
    基于James格式的CFD程序,计算NACA0012翼型流场和升力阻力系数.网格由Fluent提供的Gmbit生成,计算结果可以通过Tecplot观看(James formats based on the CFD program to calculate the flow field and the NACA0012 airfoil lift drag coefficient. Fluent grid provided by the Gmbit generated, calculated results can Tecplot Views)
    2021-02-19 11:09:44下载
    积分:1
  • 适用于任何行业是一个业务文档管理系统文档的使用…
    是一款适合任何行业企业的文件文档管理系统,多用于公司内部传阅、批阅、共享公文文件,与其它公司进行业务文件往来之用-Suitable for any industry is a business document management system documents used for internal circulation, marking, sharing document files, and other business documents between companies use
    2023-02-03 03:00:03下载
    积分:1
  • 直接带入数据..可以求解理论总塔板数以及提馏和精馏段塔板数...
    直接带入数据..可以求解理论总塔板数以及提馏和精馏段塔板数-directly into the data can be solved .. Theory total plate number and stripper and distillation of the plate numbers
    2022-07-13 22:12:30下载
    积分:1
  • 2d_ex_1
    说明:  this is fortran napl simulator example done by EPA
    2019-01-15 06:33:59下载
    积分:1
  • 超声波测距(LCD1602显示)
    说明:  基于51单片机的1602显示检测距离。程序可用无问题(1602 Display Detection Distance)
    2020-06-18 19:40:01下载
    积分:1
  • RAIM
    进行卫星接收机自主完好性监测,利用RAIM算法中的加权最小二乘法(The Technology of Satellite Autonomous Integrity Monitoring)
    2018-06-07 15:39:17下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载