登录
首页 » matlab » Deep learning_CNN DBN RBM

Deep learning_CNN DBN RBM

于 2018-12-18 发布 文件大小:14409KB
0 183
下载积分: 1 下载次数: 48

代码说明:

  运用深度学习模型实现图像的分类,主要包括卷积神经网络CNN和深信度网络DBN(Classification of images using deep learning model includes convolutional neural network CNN and belief network DBN.)

文件列表:

深度学习CNN%2BDBN%2BRBM\.travis.yml, 249 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeapplygrads.m, 1219 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caebbp.m, 917 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caebp.m, 1011 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caedown.m, 259 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeexamples.m, 754 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caenumgradcheck.m, 3618 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caesdlm.m, 845 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caetrain.m, 1148 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\caeup.m, 489 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\max3d.m, 173 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\scaesetup.m, 1937 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE\scaetrain.m, 270 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnapplygrads.m, 575 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnbp.m, 2141 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnff.m, 1774 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnnsetup.m, 2020 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnntest.m, 193 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN\cnntrain.m, 845 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CONTRIBUTING.md, 544 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\create_readme.sh, 744 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\data\mnist_uint8.mat, 14735220 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbnsetup.m, 557 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbntrain.m, 232 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmdown.m, 90 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmtrain.m, 1401 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN\rbmup.m, 89 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\LICENSE, 1313 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnapplygrads.m, 628 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnbp.m, 1638 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnchecknumgrad.m, 704 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nneval.m, 811 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnff.m, 1849 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnpredict.m, 192 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnsetup.m, 1844 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nntest.m, 184 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nntrain.m, 2414 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN\nnupdatefigures.m, 1858 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\README.md, 8861 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\README_header.md, 2244 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\REFS.md, 950 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE\saesetup.m, 132 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE\saetrain.m, 308 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\runalltests.m, 165 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_CNN.m, 981 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_DBN.m, 1031 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_NN.m, 3247 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_example_SAE.m, 934 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\allcomb.m, 2618 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\expand.m, 1958 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flicker.m, 208 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flipall.m, 80 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\fliplrf.m, 543 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\flipudf.m, 576 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\im2patches.m, 313 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\isOctave.m, 108 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\makeLMfilters.m, 1895 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\myOctaveVersion.m, 169 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\normalize.m, 97 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\patches2im.m, 242 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\randcorr.m, 283 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\randp.m, 2083 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\rnd.m, 49 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\sigm.m, 48 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\sigmrnd.m, 126 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\softmax.m, 256 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\tanh_opt.m, 54 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\visualize.m, 1072 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\whiten.m, 183 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util\zscore.m, 137 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CAE, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\CNN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\data, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\DBN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\NN, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\SAE, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\tests, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM\util, 0 , 2015-12-01
深度学习CNN%2BDBN%2BRBM, 0 , 2015-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • FastCopy!!!最快的拷贝文件工具
    fastcopy!!!!the fastest copy file tool
    2022-03-24 09:18:12下载
    积分:1
  • FSK2_demodu_SNR
    利用morlet小波变换提取小波脊线,进而利用小波脊线完成2FSK解调(the demodulation of 2FSK signal)
    2009-09-04 11:11:01下载
    积分:1
  • AFD孤岛检测方法采用S函数给出
    说明:  单相光伏并网发电系统电压前馈控制和有源频率偏移(AFD)孤岛检测法的simulink仿真模型AFD孤岛检测方法采用S函数给出(Simulink simulation model of voltage feedforward control and active frequency offset (AFD) islanding detection for single-phase photovoltaic grid connected power generation system)
    2020-05-25 13:10:40下载
    积分:1
  • 自动从数据库上移动数据,,,采用ORACAL数据库.
    自动从数据库上移动数据,,,采用ORACAL数据库.-Automatically moving data from the database, using ORACAL database.
    2022-04-26 15:01:12下载
    积分:1
  • lcd1602显示遥控键值的计算器
    应用背景基于LCD1602显示遥控键值的计算器,单片机C语言范畴,完整源程序及单片机开发板接线图。keil软件打开。关键技术 通过单片机开发板键盘输入,在LCD1602上显示的计算器(加法)。实验说明:  1.由于按键的个数有限只开通了加法运算 2.a键为“+”运算,b键为“=”  3.只开通了2位数的运算 *  4.按键规则先按下加数再按“+”再被加数再“=”  接线方法:  Jp8连JP4           
    2022-11-29 01:00:03下载
    积分:1
  • ams_017
    Arduino mega server v2.5.4
    2018-09-22 07:33:24下载
    积分:1
  • 46911214microstep_source
    pic, micro step servo motor control..
    2018-09-02 16:04:25下载
    积分:1
  • 遗传算法
    说明:  收集了一下遗传算法的MATLAB代码,希望对大家有用吧。(Collected the matlab code of genetic algorithm, hope to be useful to you.)
    2020-09-14 19:22:15下载
    积分:1
  • LinkWnd
    水晶连连看的游戏,你一定不陌生吗?可是你想过自己来编出这个游戏吗?如果你没有,那你就要看看这个源代码了,本源代码,完全实现了水晶连连看,就是水晶连连看的源代码!在一定程度上比水晶连连看原版还好!(Crystal Lianliankan game, you certainly no stranger to it? But you thought of themselves made out of the game? If you do not, you will have to see the source code, and source code, the full realization of the crystal Lianliankan is Crystal Lianliankan source code! to some extent better than the original crystal Lianliankan!)
    2007-08-02 15:17:28下载
    积分:1
  • zhan
    栈之间的传递,给于栈之间的归纳。总结。栈的进入 很退出(Stack Biography)
    2013-11-18 21:52:46下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载