登录
首页 » matlab » MFP_based_on_High_order_Statistics-master

MFP_based_on_High_order_Statistics-master

于 2020-10-28 发布
0 175
下载积分: 1 下载次数: 89

代码说明:

说明:  浅层海洋环境由信源组成声源,海洋形成信道,和水听器阵列组成接收器。在这个传播模型中,信源,信道和接收信号这三者,通常能知二求一,具体应用诸如利用海洋环境参数和接收到的信号来定位声源,或者通过计算发射信号和接收信号之间的差异,反演海洋环境参数。 而在接收器方面,我们通过设置各向同性的水听器阵列。通过算法和处理器,我们便能量化模型,传统是处理器主要基于接收信号是高斯信号,而海洋中存在着大量的有色噪声。本课题的研究目的便是在前人的基础上,在海洋声层析成像的背景下,在信源与接收器阵列之间,引入信号的高阶统计量,对非高斯过程的水下信号源进行定位,并提高算法的性能和准确性。 利用非高斯过程的高阶累积量不恒为零的特点,滤去高斯有色噪声对信号的影响,其又包含了信号的相位信息,便可以极大的优化匹配场处理过程的性能和准确性。(After receiving signals based on high order cumulant matched field processor after matched field localization, the positioning effect will be more accurate, sidelobe suppression more effectively, and compared with other traditional matched field processor in low SNR environment, it can position more accurately.)

文件列表:

MFP_based_on_High_order_Statistics-master, 0 , 2017-06-30
MFP_based_on_High_order_Statistics-master\100次结果.xlsx, 24142 , 2017-06-30
MFP_based_on_High_order_Statistics-master\LICENSE, 1067 , 2017-06-30
MFP_based_on_High_order_Statistics-master\README.md, 20260 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code, 0 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\.DS_Store, 6148 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\.prt, 122 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\101 501.fig, 1209394 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\3.mat, 11364 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\4.mat, 11364 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\BCImpedance.f90, 10031 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\BCImpedance.o, 15509 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\BCImpedancec.f90, 9665 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\BCImpedancec.o, 20871 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\Contents.m, 1371 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\ElementMod.f90, 616 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\ElementMod.o, 905 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\FGatten.m, 1050 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\InverseIterationMod.f90, 8070 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\InverseIterationMod.o, 16579 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\KrakenMod.f90, 1390 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\KrakenMod.o, 1941 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\KrakencMod.f90, 1370 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\KrakencMod.o, 1894 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\Makefile, 3160 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\PekerisRoot.f90, 630 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\PekerisRoot.m, 285 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\PekerisRoot.o, 1054 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\Pos2.m, 2202 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\RAMtoSHD.m, 2080 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\RAMtoSHD_Old.m, 1968 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\RootFinderSecantMod.f90, 4565 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\RootFinderSecantMod.o, 3088 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\SL.m, 577 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\VirTEX.m, 324 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\X.mat, 6313366 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\add_noise.m, 2527 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\addrednoise.m, 458 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\addrednoise2.m, 539 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\aggregator.m, 327 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\angles.m, 389 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\awgn2.m, 7447 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bbrun.m, 838 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\beamform.m, 835 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bellhop.m, 309 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bellhop3d.m, 321 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bounce.exe, 171728 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bounce.f90, 9310 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bounce.m, 303 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\bounce.o, 39990 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib.env, 8351 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib.flp, 8051 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib.mod, 144144 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib.prt, 2506 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib.ps, 9850 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_a.mat, 90777 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_a_cov.mat, 4192 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_b.mat, 91419 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_b_cov.mat, 4218 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_c.mat, 91759 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calib_c_cov.mat, 4228 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calibbart.ps, 80422 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calibcapon.ps, 75007 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\calibtl.ps, 40707 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\caxisrev.m, 173 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise.env, 4020 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise.flp, 3771 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise.mod, 53328 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise.prt, 3873 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise.ps, 12057 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_a.mat, 91063 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_a_cov.mat, 4192 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_b.mat, 91552 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_b_cov.mat, 4198 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_c.mat, 91843 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\colnoise_c_cov.mat, 4198 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\covar.f90, 8765 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\crci.m, 1368 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\delayandsum.m, 7091 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\edit_env_flp.m, 1205 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\elementmod.mod, 566 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluate.f90, 2787 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluate.o, 10005 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluate3d.f90, 14880 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluate3d.o, 22936 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatead.f90, 7052 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatead.o, 21565 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatecm.f90, 15042 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatecm.o, 37987 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluategb.f90, 14685 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluategb.o, 21590 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatepdq.f90, 5477 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evaluatepdq.o, 17751 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\evd.m, 619 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field.exe, 203389 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field.f90, 7555 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field.o, 21672 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field.prt, 1586 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field3d.exe, 198149 , 2017-06-30
MFP_based_on_High_order_Statistics-master\code\field3d.f90, 15489 , 2017-06-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • shuxuejianmo
    数学建模实验报告 报告内容包括数学建模中十分经典的是个问题 使用matlab编写(Mathematical modeling of experimental report in the report, including mathematical modeling is very classic is a problem to use matlab to prepare)
    2009-10-18 23:13:52下载
    积分:1
  • Lab1Ex2
    這是簡單的MATLAB PROGRAM...適會初學者(This is a simple MATLAB PROGRAM ... would be appropriate for beginners)
    2010-11-15 21:44:16下载
    积分:1
  • lixiangditong
    分别设计理想低通滤波器、巴特沃思滤波器、指数滤波器、梯形低通滤波器,并对含高斯噪声的图像进行低通滤波,截止频率自选,观察不同的截止频率,不同的滤波器的滤波效果。(Were designed for the ideal low pass filter, Butterworth filter, exponential filter, ladder low-pass filter, and Gaussian noise images with low-pass filter cutoff frequency chosen to observe the different cut-off frequency, different filter filtering device.)
    2011-05-11 15:19:22下载
    积分:1
  • k-means-and-knn_matlab
    用matlab实现机器学习中的两个经典算法:k-means和knn。(Using matlab to achieve in two classic machine learning algorithms: k-means and knn.)
    2011-06-17 22:23:56下载
    积分:1
  • WMM-TIME
    利用小波神经网络来对时间序列进行预测的源程序(Wavelet neural network to predict the time series of source)
    2011-11-17 21:47:35下载
    积分:1
  • SMO
    sliding mode observer for PMSM
    2013-05-17 07:25:06下载
    积分:1
  • Kalman_filter_FDI
    基于卡尔曼滤波器的故障诊断示列!对初学者很有用!(Kalman filter-based fault diagnosis show out! Very useful for beginners!)
    2007-09-23 20:23:40下载
    积分:1
  • SIMPSA
    说明:  非线性单纯性和模拟退货算法的matlab程序: 本程序实现了非线性单纯性和模拟退货算法的联合优化求解(Nonlinear simplex algorithm and simulated return matlab procedure: This procedure achieved a non-linear simplex algorithm and simulated return for solving the joint optimization)
    2008-09-20 09:04:01下载
    积分:1
  • cross-visibility-graph
    根据两列时间序列,建立交叉影响关系的复杂网络,从而研究一个序列对另一个序列的影响.(construct a cross-visibility complex network two time series)
    2015-03-18 14:55:02下载
    积分:1
  • anisodiff2D
    医学图像经典预处理,matlab文件,可直接编译(Classic pre-medical images, matlab file)
    2010-11-11 13:31:04下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载