-
卡通小闹钟,它能给你一个不一样的感受
卡通小闹钟,它能给你一个不一样的感受-cartoon small alarm clock, it will give you a different feeling!
- 2022-02-03 01:44:30下载
- 积分:1
-
[基础][CMI]CMI8.7.5.1
说明: 我的世界服务器CMI - 多功能基础插件(My world server CMI - multifunctional basic plug in)
- 2021-04-10 22:38:58下载
- 积分:1
-
创业
与创业有关的资料,可以用来商业设计大赛参考.-And entrepreneurship-related information, can be used to refer to commercial design contest.
- 2022-02-10 09:28:53下载
- 积分:1
-
NumericalHeatTransfer2
说明: 1. 院士陶文铨的经典书籍:数值传热学(第二版)
2. 做数值计算的人不可不看的书籍
3. pdf格式,加了书签,方便阅读(1. Academician Wen-Quan Tao classic books: Numerical Heat Transfer (second edition) 2. The people to do numerical computation can not see the books 3. Pdf format, added bookmarks, user-friendly)
- 2009-08-08 21:03:38下载
- 积分:1
-
vod点歌系统,VB开发,操作…
vod 点歌系统,VB开发,操作相对比较简单.-UNESCO Intergovernmental following address system, VB development, operation is relatively simple.
- 2022-08-23 08:19:39下载
- 积分:1
-
CAN_bootloader
freescale .S19目标文件,走CAN线通信的bootloader上位机,要么不上传,上传的都是经典(freescale bootloader Client)
- 2013-10-09 08:54:37下载
- 积分:1
-
脚本1.7(人物18岁)
说明: 一款可以一键修改皇帝成长计划2H5版的脚本插件(A script plug-in that can modify emperor growth plan 2h5 with one click)
- 2021-02-20 18:29:43下载
- 积分:1
-
粒子群算法优化PID系数
说明: 使用粒子群算法优化PID控制系统参数,提升PID性能(Using particle swarm optimization to optimize PID control system parameters and improve PID performance)
- 2020-12-23 09:33:20下载
- 积分:1
-
2018国网面试资料合集
说明: 国家电网面试资料大全,很实用,各地区基本公用的一套资料(State Grid interview data is comprehensive, very practical, a set of basic information for all regions.)
- 2019-03-04 16:07:23下载
- 积分:1
-
随机森林
说明: 用N来表示训练用例(样本)的个数,M表示特征数目。
输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。
对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。
每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。(N is used to represent the number of training cases (samples), and M is used to represent the number of features.
The number of input features m is used to determine the decision result of a node in the decision tree, where m should be far less than m.
From N training cases (samples), n times are sampled in the way of put back sampling to form a training set (i.e. bootstrap sampling), and the unselected cases (samples) are used to predict and evaluate the error.
For each node, m features are randomly selected, and the decision of each node in the decision tree is determined based on these features. According to these m characteristics, the best splitting mode is calculated.
Each tree will grow completely without pruning, which may be adopted after building a normal tree classifier).)
- 2021-01-28 13:47:33下载
- 积分:1