登录
首页 » matlab » 3.23PSO-SVM参数优化预测

3.23PSO-SVM参数优化预测

于 2019-03-25 发布
0 223
下载积分: 1 下载次数: 28

代码说明:

说明:  pso优化的支持向量机的时序序列预测 内中有数据 需安装工具箱(Pso-optimized support vector machine needs toolbox to install data in time series prediction)

文件列表:

3.23PSO-SVM参数优化预测, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\chapter_PSO2.m, 1286 , 2019-03-23
3.23PSO-SVM参数优化预测\chapter_PSO3.m, 2557 , 2019-03-23
3.23PSO-SVM参数优化预测\data2.mat, 560 , 2019-03-23
3.23PSO-SVM参数优化预测\data3.mat, 1432 , 2019-03-22
3.23PSO-SVM参数优化预测\data50.mat, 3788 , 2019-03-23
3.23PSO-SVM参数优化预测\predictorsfun.m, 396 , 2019-03-14
3.23PSO-SVM参数优化预测\rollfun.m, 885 , 2019-03-14
3.23PSO-SVM参数优化预测\SVM-toolbox, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto], 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\a_template_flow_usingSVM_class.m, 2519 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\a_template_flow_usingSVM_regress.m, 2338 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\ClassResult.m, 2086 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\ClassResult_test.m, 366 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\gaSVMcgForClass.m, 3579 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\gaSVMcgForRegress.m, 3468 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\gaSVMcgpForRegress.m, 3744 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\libsvm参数说明.txt, 2865 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield], 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\bs2rv.m, 3217 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\contents.m, 1835 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtbase.m, 1168 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtbp.m, 2187 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\crtrp.m, 2091 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\migrate.m, 7205 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mpga.m, 4019 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mut.m, 1609 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mutate.m, 3437 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mutbga.m, 4943 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mytest, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\mytest\gaSVM.m, 2792 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\ranking.m, 4709 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recdis.m, 1825 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recint.m, 1895 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\reclin.m, 1953 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recmut.m, 4852 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\recombin.m, 2438 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\reins.m, 5574 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\rep.m, 1208 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\resplot.m, 2080 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\rws.m, 1090 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\scaling.m, 1270 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\select.m, 2401 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\sus.m, 1319 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovdp.m, 1042 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovdprs.m, 1090 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovmp.m, 2795 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovsh.m, 1032 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovshrs.m, 1080 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovsp.m, 1043 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\gatbx[Sheffield]\xovsprs.m, 1090 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\myprivate\plotroc2009b.m, 5374 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\pcaForSVM.m, 1272 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\plotSVMroc.m, 1304 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\plotSVMroc_test.m, 381 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\plotSVMroc_test2.m, 1002 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\psoSVMcgForClass.m, 5586 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\psoSVMcgForRegress.m, 5349 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\psoSVMcgpForRegress.m, 6208 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\Readme[by faruto]CN.txt, 1602 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\Readme[by faruto]EN.txt, 2706 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\scaleForSVM.m, 998 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVC.m, 4139 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVC_test.m, 1026 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVMcgForClass.m, 2643 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVMcgForRegress.m, 2546 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\svmplot.m, 1872 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVR.m, 6012 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\SVR_test.m, 1494 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\#gaSVMcgForClass.m, 7841 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\#gaSVMcgForRegress.m, 7692 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\#gaSVMcgpForRegress.m, 8223 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\DCTforSVM.m, 406 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\fasticaForSVM.m, 871 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\SVMcgpForRegress.m, 2593 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\testFor_DCT.m, 1362 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\testingFuntion_beta\test_for_ica_SVM.m, 1126 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data2, 0 , 2019-03-23
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data2\wine_test.mat, 23120 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data2\x123.mat, 2936 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\adult.mat, 132501 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\book.mat, 33319 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\data1.mat, 9736 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\image_seg.mat, 146444 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\test1.mat, 3640 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\testFor_image_seg.m, 1888 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\wine_test.mat, 23120 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\test_data\x123.mat, 2936 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\TutorialForFarutoUltimate3.1.pdf, 237947 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\TutorialTest.m, 3972 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\VF.m, 3869 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab-implement[by faruto]\更新说明2011.06.10.txt, 981 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab\heart_scale.mat, 28904 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab\libsvmread.c, 3988 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab\libsvmread.mexw32, 20480 , 2017-03-20
3.23PSO-SVM参数优化预测\SVM-toolbox\matlab\libsvmwrite.c, 2123 , 2017-03-20

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GuidedFilter
    different matlab implementation of guided filter
    2013-05-01 00:04:55下载
    积分:1
  • allupf_demos
    主要用于各种的状态估计滤波,在目标跟踪和定位方面有很强的应用,在实际项目中有应用的范例(Mainly used for a variety of state estimation filter, target tracking and positioning in a strong application in practical projects are examples of applications)
    2010-11-15 16:00:33下载
    积分:1
  • LMS
    LMS算法是最被广泛应用的滤波器演算法,最大的特点就是计算量小,易于实现。(LMS algorithm is the most widely used filter algorithms, the biggest feature is the small amount of calculation, easy to implement.)
    2011-08-11 17:58:16下载
    积分:1
  • thesis
    关于粒子群优化的好文章,文章的PSO说话的很详细,希望能给新手一些帮助。(About Particle Swarm Optimization a good article, the article PSO speak in great detail, I hope to give beginners some help.)
    2014-08-07 22:01:23下载
    积分:1
  • Re__Excuse_me
    power system economics
    2008-07-07 20:37:17下载
    积分:1
  • rrsqrt
    This code is for Reduce Rank Square Root Technique in MatLab
    2012-08-10 00:29:31下载
    积分:1
  • hmm
    hidden markov model toolbox
    2011-11-16 06:24:21下载
    积分:1
  • ica1
    independent component analysis (ICA)
    2012-10-02 11:06:51下载
    积分:1
  • matlab
    卡尔曼滤波器处理有色噪声和有色噪声的白色化(Kalman filter processing colored white noise and colored noise of)
    2013-11-02 19:18:28下载
    积分:1
  • max alpha
    使用个股日内髙频收益率计算己实现值进行分析,同时计算得到二阶矩 和高阶矩值并进行对比。本文根据己实现量的大小将所有样本股分为己实现值由 小到大的姐别,分别跟踪各股票组合的收益,探索预期收益与个股己实现值之间 的变化关系,然后将分组的结果应用于多空策略,为提高资产配置收益提供参考。 同时,将各己实现变量和各类对预期收益产生影响的控制变量放在一起构建 Fama-MacBeth截面回归,分析高频已实现量是否具有定价能力。(The realized value is calculated by using the daily gust rate of return of individual stocks, and the second-order moments are obtained by calculating at the same time. Comparisons are made with higher order moment values. This paper divides all sample stocks into realized values according to the size of realized stocks. Sisters from small to large track the earnings of each stock portfolio, and explore the relationship between expected earnings and the realized value of each stock. Then the grouping results are applied to the multi-empty strategy to provide reference for improving asset allocation returns.)
    2020-06-24 10:20:02下载
    积分:1
  • 696516资源总数
  • 106405会员总数
  • 10今日下载