登录
首页 » Python » python-Machine-learning-master

python-Machine-learning-master

于 2019-04-17 发布
0 174
下载积分: 1 下载次数: 1

代码说明:

说明:  一个机器学习的python文件,里面拥有各种机器学习方法,可以供大家参考(A Python file for machine learning, which has various machine learning methods, can be used for your reference.)

文件列表:

python-Machine-learning-master, 0 , 2019-03-18
python-Machine-learning-master\PCA, 0 , 2019-03-07
python-Machine-learning-master\PCA\README, 60 , 2019-03-07
__MACOSX, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA\._README, 212 , 2019-03-07
python-Machine-learning-master\PCA\PCA.py, 1338 , 2019-03-07
__MACOSX\python-Machine-learning-master\PCA\._PCA.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._PCA, 212 , 2019-03-07
python-Machine-learning-master\K-Means, 0 , 2019-03-07
python-Machine-learning-master\K-Means\city.txt, 2294 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\K-Means\._city.txt, 212 , 2019-03-07
python-Machine-learning-master\K-Means\README, 257 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._README, 212 , 2019-03-07
python-Machine-learning-master\K-Means\K-Means.py, 3492 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._K-Means.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._K-Means, 212 , 2019-03-07
python-Machine-learning-master\KNN, 0 , 2019-03-07
python-Machine-learning-master\KNN\README, 527 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\KNN\._README, 212 , 2019-03-07
python-Machine-learning-master\KNN\KNN.py, 486 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN\._KNN.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._KNN, 212 , 2019-03-07
python-Machine-learning-master\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\Xgboost, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost\code, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\code\ofoFeature.ipynb, 33515 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\code\._ofoFeature.ipynb, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\code\Xgboost.ipynb, 13868617 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code\._Xgboost.ipynb, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._code, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\README.md, 1286 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._README.md, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet3.rar, 1851524 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet3.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet2.rar, 3830423 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet2.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet1.rar, 2560997 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet1.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_preprocessed, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\sample_submission.rar, 195 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._sample_submission.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_test_revised.rar, 768046 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_test_revised.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_train.rar, 10871156 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_train.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_origin, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._Data, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\.idea, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\Xgboost.iml, 284 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\workspace.xml, 376 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\modules.xml, 266 , 2019-03-18
__MACOSX\python-Machine-learning-master\._Xgboost, 212 , 2019-03-18
python-Machine-learning-master\Decision_tree, 0 , 2019-03-07
python-Machine-learning-master\Decision_tree\tree.py, 1585 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Decision_tree\._tree.py, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\source _data.txt, 132 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._source _data.txt, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\README, 82 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._README, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\Decision_tree.py, 1172 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._Decision_tree.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._Decision_tree, 212 , 2019-03-07
python-Machine-learning-master\RandomForest, 0 , 2019-03-07
python-Machine-learning-master\RandomForest\README, 899 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\RandomForest\._README, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestRegressor.py, 1610 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestRegressor.py, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestClassifier.py, 5469 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestClassifier.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._RandomForest, 212 , 2019-03-07
python-Machine-learning-master\README, 45 , 2019-03-07
__MACOSX\python-Machine-learning-master\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM, 0 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVR.py, 1424 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVR.py, 212 , 2019-03-07
python-Machine-learning-master\SVM\README, 1204 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVC.py, 6098 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVC.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._SVM, 212 , 2019-03-07
python-Machine-learning-master\linear regression, 0 , 2019-03-07
python-Machine-learning-master\linear regression\README, 406 , 2019-03-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DFT_ang
    在uVision环境下用C编程,用离散傅里叶变换可以计算出频率的值(In uVision environment using C programming, using discrete Fourier transform frequency value can be calculated)
    2010-09-22 18:03:09下载
    积分:1
  • PolyFit
    说明:  PoleyFitqw曲3线3拟w合类q库 PolewyFitqw曲w线拟w合t类库 PoelywFitq曲w线拟t合类t库 PoelyFtitq曲er线rw合类t库 PolywrFitq曲q线拟wt合t类库(Pwoly33FiwtPoleetPwolyFit555PolywFit)
    2020-06-25 11:00:01下载
    积分:1
  • 大连理工大矩阵与值分析上机作业
    利用matlab软件进行数值编程,优化计算。(Matlab software is used for numerical programming and optimization calculation.)
    2020-06-22 04:40:02下载
    积分:1
  • lorenzeq
    用Wolf法计算lorenzeq混沌系统的Lyapunov指数谱。改变混沌系统参数,计算准确,运行let.m文件,即可计算Lyapunov指数谱 (Wolf Law lorenzeq chaotic systems Lyapunov exponent spectrum. Change the chaotic system parameters, calculated accurate, run let.m file, you can calculate the Lyapunov exponent spectrum)
    2012-11-08 21:13:43下载
    积分:1
  • Least-squares
    在visual c++6.0的环境下,使用C++语言编写的最小二乘法程序。(In visual c++6.0 environment, using C++ language least squares procedure.)
    2011-06-24 14:33:54下载
    积分:1
  • orthofit
    对离散点进行多项式拟合,不同于传统多项式拟合高次出现病态,此程序可以拟合高阶多项式( ORTHOFIT Fit polynomial to data. YS = ORTHOFIT(X,Y,N) smooths/fits data Y(X) in a least-squares sense using a polynomial of degree N and returns the smoothed data YS.)
    2021-02-14 15:49:49下载
    积分:1
  • FFT
    FFT with fix point 2*N
    2013-10-06 15:38:38下载
    积分:1
  • mass-5
    fluent模拟焊接,熔滴过渡的质量源项(Welding Simulation, mass source)
    2020-07-02 21:00:01下载
    积分:1
  • gsl1.8
    GNU Scientific Library (GSL) 是一个用于科学计算的 C 语言类库。有超过1000个函数。 (GNU Scientific Library (GSL) is a C language library for scientific computing. There are more than 1000 functions.)
    2013-04-23 10:51:50下载
    积分:1
  • lbp
    Local Binary Pattern
    2011-09-28 18:17:48下载
    积分:1
  • 696516资源总数
  • 106446会员总数
  • 9今日下载