登录
首页 » Python » python-Machine-learning-master

python-Machine-learning-master

于 2019-04-17 发布
0 165
下载积分: 1 下载次数: 1

代码说明:

说明:  一个机器学习的python文件,里面拥有各种机器学习方法,可以供大家参考(A Python file for machine learning, which has various machine learning methods, can be used for your reference.)

文件列表:

python-Machine-learning-master, 0 , 2019-03-18
python-Machine-learning-master\PCA, 0 , 2019-03-07
python-Machine-learning-master\PCA\README, 60 , 2019-03-07
__MACOSX, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA\._README, 212 , 2019-03-07
python-Machine-learning-master\PCA\PCA.py, 1338 , 2019-03-07
__MACOSX\python-Machine-learning-master\PCA\._PCA.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._PCA, 212 , 2019-03-07
python-Machine-learning-master\K-Means, 0 , 2019-03-07
python-Machine-learning-master\K-Means\city.txt, 2294 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\K-Means\._city.txt, 212 , 2019-03-07
python-Machine-learning-master\K-Means\README, 257 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._README, 212 , 2019-03-07
python-Machine-learning-master\K-Means\K-Means.py, 3492 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._K-Means.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._K-Means, 212 , 2019-03-07
python-Machine-learning-master\KNN, 0 , 2019-03-07
python-Machine-learning-master\KNN\README, 527 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\KNN\._README, 212 , 2019-03-07
python-Machine-learning-master\KNN\KNN.py, 486 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN\._KNN.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._KNN, 212 , 2019-03-07
python-Machine-learning-master\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\Xgboost, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost\code, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\code\ofoFeature.ipynb, 33515 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\code\._ofoFeature.ipynb, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\code\Xgboost.ipynb, 13868617 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code\._Xgboost.ipynb, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._code, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\README.md, 1286 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._README.md, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet3.rar, 1851524 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet3.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet2.rar, 3830423 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet2.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet1.rar, 2560997 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet1.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_preprocessed, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\sample_submission.rar, 195 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._sample_submission.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_test_revised.rar, 768046 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_test_revised.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_train.rar, 10871156 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_train.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_origin, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._Data, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\.idea, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\Xgboost.iml, 284 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\workspace.xml, 376 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\modules.xml, 266 , 2019-03-18
__MACOSX\python-Machine-learning-master\._Xgboost, 212 , 2019-03-18
python-Machine-learning-master\Decision_tree, 0 , 2019-03-07
python-Machine-learning-master\Decision_tree\tree.py, 1585 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Decision_tree\._tree.py, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\source _data.txt, 132 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._source _data.txt, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\README, 82 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._README, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\Decision_tree.py, 1172 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._Decision_tree.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._Decision_tree, 212 , 2019-03-07
python-Machine-learning-master\RandomForest, 0 , 2019-03-07
python-Machine-learning-master\RandomForest\README, 899 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\RandomForest\._README, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestRegressor.py, 1610 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestRegressor.py, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestClassifier.py, 5469 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestClassifier.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._RandomForest, 212 , 2019-03-07
python-Machine-learning-master\README, 45 , 2019-03-07
__MACOSX\python-Machine-learning-master\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM, 0 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVR.py, 1424 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVR.py, 212 , 2019-03-07
python-Machine-learning-master\SVM\README, 1204 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVC.py, 6098 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVC.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._SVM, 212 , 2019-03-07
python-Machine-learning-master\linear regression, 0 , 2019-03-07
python-Machine-learning-master\linear regression\README, 406 , 2019-03-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 0097
    高斯正算坐标程序计算高斯投影的正算问题克拉索夫斯基椭球(Gaussian count is calculated coordinates of the Gaussian projection is counting police used batons for dispersing ellipsoid)
    2005-03-19 09:55:21下载
    积分:1
  • 源代码
    七段s曲线路径规划程序详解 非常适合做运动控制规划(Detailed solution of seven segment s curve path planning program)
    2018-02-01 09:38:46下载
    积分:1
  • SVM
    回归分析,该支持向量机算法可用于预测,电力负荷、风力发电预测等(Regression analysis, the support vector machine algorithm can be used to forecast the power load, wind power prediction)
    2017-08-16 10:43:04下载
    积分:1
  • zernfun
    波面的zernike多项式拟合,在光学测试领域应用相当广泛(Wave surface zernike polynomial fitting, in the field of application of a wide range of optical test)
    2009-10-14 15:05:12下载
    积分:1
  • chemkin
    Chemkin III source file (Chemkin III source )
    2012-04-24 22:28:51下载
    积分:1
  • kk
    说明:  微分进化算法中的其中两个子程序,还有未上传(Differential evolution algorithm)
    2019-07-20 21:29:49下载
    积分:1
  • Viscoelastic
    粘弹正演程序和模型实例,2维数值模拟正演,适应于粘弹介质,(This program can be two-dimensional numerical simulation of acoustic wave equation, Viscoelastic isotropic media.)
    2013-12-09 15:07:58下载
    积分:1
  • non_domination_sort_mod
    说明:  带精英决策的多目标优化关键程序,希望对大家有用。(Key procedures of multiobjective optimization with elite decision)
    2020-06-03 17:26:56下载
    积分:1
  • Tensorflow
    Python Tensorflow机器学习实战中文版(Python Tensorflow introduction to practical coding)
    2017-12-07 16:48:39下载
    积分:1
  • vss-nlms
    国外最近的一篇变步长nlms仿真,该文件有文中的几种仿真(Recent foreign nlms a variable step simulation, there is the text of the document of several simulation)
    2013-07-15 10:00:03下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载