登录
首页 » Python » python-Machine-learning-master

python-Machine-learning-master

于 2019-04-17 发布
0 148
下载积分: 1 下载次数: 1

代码说明:

说明:  一个机器学习的python文件,里面拥有各种机器学习方法,可以供大家参考(A Python file for machine learning, which has various machine learning methods, can be used for your reference.)

文件列表:

python-Machine-learning-master, 0 , 2019-03-18
python-Machine-learning-master\PCA, 0 , 2019-03-07
python-Machine-learning-master\PCA\README, 60 , 2019-03-07
__MACOSX, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\PCA\._README, 212 , 2019-03-07
python-Machine-learning-master\PCA\PCA.py, 1338 , 2019-03-07
__MACOSX\python-Machine-learning-master\PCA\._PCA.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._PCA, 212 , 2019-03-07
python-Machine-learning-master\K-Means, 0 , 2019-03-07
python-Machine-learning-master\K-Means\city.txt, 2294 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\K-Means\._city.txt, 212 , 2019-03-07
python-Machine-learning-master\K-Means\README, 257 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._README, 212 , 2019-03-07
python-Machine-learning-master\K-Means\K-Means.py, 3492 , 2019-03-07
__MACOSX\python-Machine-learning-master\K-Means\._K-Means.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._K-Means, 212 , 2019-03-07
python-Machine-learning-master\KNN, 0 , 2019-03-07
python-Machine-learning-master\KNN\README, 527 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\KNN\._README, 212 , 2019-03-07
python-Machine-learning-master\KNN\KNN.py, 486 , 2019-03-07
__MACOSX\python-Machine-learning-master\KNN\._KNN.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._KNN, 212 , 2019-03-07
python-Machine-learning-master\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.DS_Store, 6148 , 2019-03-18
__MACOSX\python-Machine-learning-master\Xgboost, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\._.DS_Store, 120 , 2019-03-18
python-Machine-learning-master\Xgboost\code, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\code\ofoFeature.ipynb, 33515 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\code\._ofoFeature.ipynb, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\code\Xgboost.ipynb, 13868617 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\code\._Xgboost.ipynb, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._code, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\README.md, 1286 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._README.md, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet3.rar, 1851524 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet3.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet2.rar, 3830423 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet2.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_preprocessed\ProcessDataSet1.rar, 2560997 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_preprocessed\._ProcessDataSet1.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_preprocessed, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\sample_submission.rar, 195 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._sample_submission.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_test_revised.rar, 768046 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_test_revised.rar, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\Data\data_origin\ccf_offline_stage1_train.rar, 10871156 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\data_origin\._ccf_offline_stage1_train.rar, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\Data\._data_origin, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\Xgboost\._Data, 212 , 2019-03-07
python-Machine-learning-master\Xgboost\.idea, 0 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\Xgboost.iml, 284 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\workspace.xml, 376 , 2019-03-18
python-Machine-learning-master\Xgboost\.idea\modules.xml, 266 , 2019-03-18
__MACOSX\python-Machine-learning-master\._Xgboost, 212 , 2019-03-18
python-Machine-learning-master\Decision_tree, 0 , 2019-03-07
python-Machine-learning-master\Decision_tree\tree.py, 1585 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\Decision_tree\._tree.py, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\source _data.txt, 132 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._source _data.txt, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\README, 82 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._README, 212 , 2019-03-07
python-Machine-learning-master\Decision_tree\Decision_tree.py, 1172 , 2019-03-07
__MACOSX\python-Machine-learning-master\Decision_tree\._Decision_tree.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._Decision_tree, 212 , 2019-03-07
python-Machine-learning-master\RandomForest, 0 , 2019-03-07
python-Machine-learning-master\RandomForest\README, 899 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\RandomForest\._README, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestRegressor.py, 1610 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestRegressor.py, 212 , 2019-03-07
python-Machine-learning-master\RandomForest\RandomForestClassifier.py, 5469 , 2019-03-07
__MACOSX\python-Machine-learning-master\RandomForest\._RandomForestClassifier.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._RandomForest, 212 , 2019-03-07
python-Machine-learning-master\README, 45 , 2019-03-07
__MACOSX\python-Machine-learning-master\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM, 0 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVR.py, 1424 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM, 0 , 2019-04-17
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVR.py, 212 , 2019-03-07
python-Machine-learning-master\SVM\README, 1204 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._README, 212 , 2019-03-07
python-Machine-learning-master\SVM\SVM_SVC.py, 6098 , 2019-03-07
__MACOSX\python-Machine-learning-master\SVM\._SVM_SVC.py, 212 , 2019-03-07
__MACOSX\python-Machine-learning-master\._SVM, 212 , 2019-03-07
python-Machine-learning-master\linear regression, 0 , 2019-03-07
python-Machine-learning-master\linear regression\README, 406 , 2019-03-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Cholesky
    该程序是正定矩阵的Cholesky分解实例,Cholesky是矩阵分解常用的方法(The procedure is the Cholesky decomposition of positive definite matrix example, Cholesky matrix decomposition is a commonly used method)
    2007-10-11 10:59:30下载
    积分:1
  • Goal_programming_model_sparse
    针对多期随机规划问题,利用情景树方法来求解(For multi-period stochastic programming problems, the use of scenarios to solve Tree)
    2016-01-05 21:33:06下载
    积分:1
  • inverse_preisach
    此程序碼為計算inverse-preisach之解析法計算(This program code for calculating inverse-preisach of analytical method)
    2011-11-02 05:17:12下载
    积分:1
  • AirParm1
    大气参数计算,含密度、湿度、粘性、热导率等(-Air parameters, density, humidity, viscosity, thermal conductivity)
    2013-10-24 22:49:04下载
    积分:1
  • CFD
    这是一个求解NACA0012翼型在不同马赫数与攻角下的流场的Fortran源代码。计算格式采用了原始AUSM、AUSMDV以及AUSM+格式。为了提高计算精度,使用了不同限制器的MUSCL插值。(This is a Fortran source code for solving the flow field around the NACA0012 airfoil at different Mach numbers and angles of attack. The scheme of AUSM, AUSMDV and AUSM+ are employed for this code. In order to improve the calculation accuracy, the MUSCL interpolation with various type limiter are used.)
    2014-04-09 13:39:33下载
    积分:1
  • PCA_classifier_version1b
    许多图像问题需要某种物体的检测,其中图像之间的物体的外观有自然的变化。 如人脸识别,病变检测,神经通道分割。 这些图像问题可以通过手动注释图像对象来解决,以训练识别正常物体外观的模型。 这可以通过基于PCA的最大似然分类器来完成。(PCA algorithm suitable for detection / recognition of 2D image "objects")
    2018-01-22 21:20:02下载
    积分:1
  • SVMPrediction
    支持向量基预测的小数据量的预测方法。包括数据拟合,多项式预测等功能()
    2008-03-08 13:58:11下载
    积分:1
  • afat_v1_0.tar
    根据 Cijkl 计算各向异性介质不同方向的速度(According to Cijkl, the velocities of anisotropic media in different directions are calculated)
    2017-08-18 21:10:04下载
    积分:1
  • Inverse
    使用C编写的复数矩阵求逆,使用高斯消去法,已经和matlab结果做过对比,无误(Written in C and the complex matrix inverse, using the Gaussian elimination method, has been done and matlab results contrast, correct)
    2012-07-11 18:23:24下载
    积分:1
  • error
    有限元计算软件Nastran 运算出错时的所有错误列表,从标号1到22107.7。(FEM calculation error list of all software Nastran Error from grade 1 to 22,107.7.)
    2013-12-03 23:55:42下载
    积分:1
  • 696518资源总数
  • 105554会员总数
  • 2今日下载