登录
首页 » Python » Unet-master2

Unet-master2

于 2019-04-19 发布
0 185
下载积分: 1 下载次数: 13

代码说明:

说明:  CN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。(CN classifies images at the pixel level, thus resolving the problem of semantic segmentation at the semantic level. Unlike classical CNN, which uses full-connection layer to get fixed-length feature vectors after convolution layer for classification (full-connection layer + soft Max output), FCN can accept any size of input image, and uses deconvolution layer to sample feature map of the last convolution layer to restore it to the same size of input image, so that each pixel can be generated. At the same time, the spatial information of the original input image is retained. Finally, the pixel-by-pixel classification is carried out on the feature map sampled above.)

文件列表:

Unet-master, 0 , 2018-04-19
Unet-master\README.md, 141 , 2018-04-19
Unet-master\data.py, 8130 , 2018-04-19
Unet-master\images, 0 , 2018-04-19
Unet-master\images\test, 0 , 2018-04-19
Unet-master\images\test\0.tif, 262278 , 2018-04-19
Unet-master\images\test\1.tif, 262278 , 2018-04-19
Unet-master\images\test\10.tif, 262278 , 2018-04-19
Unet-master\images\test\11.tif, 262278 , 2018-04-19
Unet-master\images\test\12.tif, 262278 , 2018-04-19
Unet-master\images\test\13.tif, 262278 , 2018-04-19
Unet-master\images\test\14.tif, 262278 , 2018-04-19
Unet-master\images\test\15.tif, 262278 , 2018-04-19
Unet-master\images\test\16.tif, 262278 , 2018-04-19
Unet-master\images\test\17.tif, 262278 , 2018-04-19
Unet-master\images\test\18.tif, 262278 , 2018-04-19
Unet-master\images\test\19.tif, 262278 , 2018-04-19
Unet-master\images\test\2.tif, 262278 , 2018-04-19
Unet-master\images\test\20.tif, 262278 , 2018-04-19
Unet-master\images\test\21.tif, 262278 , 2018-04-19
Unet-master\images\test\22.tif, 262278 , 2018-04-19
Unet-master\images\test\23.tif, 262278 , 2018-04-19
Unet-master\images\test\24.tif, 262278 , 2018-04-19
Unet-master\images\test\25.tif, 262278 , 2018-04-19
Unet-master\images\test\26.tif, 262278 , 2018-04-19
Unet-master\images\test\27.tif, 262278 , 2018-04-19
Unet-master\images\test\28.tif, 262278 , 2018-04-19
Unet-master\images\test\29.tif, 262278 , 2018-04-19
Unet-master\images\test\3.tif, 262278 , 2018-04-19
Unet-master\images\test\4.tif, 262278 , 2018-04-19
Unet-master\images\test\5.tif, 262278 , 2018-04-19
Unet-master\images\test\6.tif, 262278 , 2018-04-19
Unet-master\images\test\7.tif, 262278 , 2018-04-19
Unet-master\images\test\8.tif, 262278 , 2018-04-19
Unet-master\images\test\9.tif, 262278 , 2018-04-19
Unet-master\images\train, 0 , 2018-04-19
Unet-master\images\train\images, 0 , 2018-04-19
Unet-master\images\train\images\0.tif, 262278 , 2018-04-19
Unet-master\images\train\images\1.tif, 262278 , 2018-04-19
Unet-master\images\train\images\10.tif, 262278 , 2018-04-19
Unet-master\images\train\images\11.tif, 262278 , 2018-04-19
Unet-master\images\train\images\12.tif, 262278 , 2018-04-19
Unet-master\images\train\images\13.tif, 262278 , 2018-04-19
Unet-master\images\train\images\14.tif, 262278 , 2018-04-19
Unet-master\images\train\images\15.tif, 262278 , 2018-04-19
Unet-master\images\train\images\16.tif, 262278 , 2018-04-19
Unet-master\images\train\images\17.tif, 262278 , 2018-04-19
Unet-master\images\train\images\18.tif, 262278 , 2018-04-19
Unet-master\images\train\images\19.tif, 262278 , 2018-04-19
Unet-master\images\train\images\2.tif, 262278 , 2018-04-19
Unet-master\images\train\images\20.tif, 262278 , 2018-04-19
Unet-master\images\train\images\21.tif, 262278 , 2018-04-19
Unet-master\images\train\images\22.tif, 262278 , 2018-04-19
Unet-master\images\train\images\23.tif, 262278 , 2018-04-19
Unet-master\images\train\images\24.tif, 262278 , 2018-04-19
Unet-master\images\train\images\25.tif, 262278 , 2018-04-19
Unet-master\images\train\images\26.tif, 262278 , 2018-04-19
Unet-master\images\train\images\27.tif, 262278 , 2018-04-19
Unet-master\images\train\images\28.tif, 262278 , 2018-04-19
Unet-master\images\train\images\29.tif, 262278 , 2018-04-19
Unet-master\images\train\images\3.tif, 262278 , 2018-04-19
Unet-master\images\train\images\4.tif, 262278 , 2018-04-19
Unet-master\images\train\images\5.tif, 262278 , 2018-04-19
Unet-master\images\train\images\6.tif, 262278 , 2018-04-19
Unet-master\images\train\images\7.tif, 262278 , 2018-04-19
Unet-master\images\train\images\8.tif, 262278 , 2018-04-19
Unet-master\images\train\images\9.tif, 262278 , 2018-04-19
Unet-master\images\train\label, 0 , 2018-04-19
Unet-master\images\train\label\0.tif, 262278 , 2018-04-19
Unet-master\images\train\label\1.tif, 262278 , 2018-04-19
Unet-master\images\train\label\10.tif, 262278 , 2018-04-19
Unet-master\images\train\label\11.tif, 262278 , 2018-04-19
Unet-master\images\train\label\12.tif, 262278 , 2018-04-19
Unet-master\images\train\label\13.tif, 262278 , 2018-04-19
Unet-master\images\train\label\14.tif, 262278 , 2018-04-19
Unet-master\images\train\label\15.tif, 262278 , 2018-04-19
Unet-master\images\train\label\16.tif, 262278 , 2018-04-19
Unet-master\images\train\label\17.tif, 262278 , 2018-04-19
Unet-master\images\train\label\18.tif, 262278 , 2018-04-19
Unet-master\images\train\label\19.tif, 262278 , 2018-04-19
Unet-master\images\train\label\2.tif, 262278 , 2018-04-19
Unet-master\images\train\label\20.tif, 262278 , 2018-04-19
Unet-master\images\train\label\21.tif, 262278 , 2018-04-19
Unet-master\images\train\label\22.tif, 262278 , 2018-04-19
Unet-master\images\train\label\23.tif, 262278 , 2018-04-19
Unet-master\images\train\label\24.tif, 262278 , 2018-04-19
Unet-master\images\train\label\25.tif, 262278 , 2018-04-19
Unet-master\images\train\label\26.tif, 262278 , 2018-04-19
Unet-master\images\train\label\27.tif, 262278 , 2018-04-19
Unet-master\images\train\label\28.tif, 262278 , 2018-04-19
Unet-master\images\train\label\29.tif, 262278 , 2018-04-19
Unet-master\images\train\label\3.tif, 262278 , 2018-04-19
Unet-master\images\train\label\4.tif, 262278 , 2018-04-19
Unet-master\images\train\label\5.tif, 262278 , 2018-04-19
Unet-master\images\train\label\6.tif, 262278 , 2018-04-19
Unet-master\images\train\label\7.tif, 262278 , 2018-04-19
Unet-master\images\train\label\8.tif, 262278 , 2018-04-19
Unet-master\images\train\label\9.tif, 262278 , 2018-04-19
Unet-master\test_predict.py, 1230 , 2018-04-19
Unet-master\unet.py, 9182 , 2018-04-19

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MCGS环境下两个实例,用于PLC自动控制(汽车生产线和供水控制),控制系统仿真,在线自动监控,实现生产的无人化或少人管理。...
    MCGS环境下两个实例,用于PLC自动控制(汽车生产线和供水控制),控制系统仿真,在线自动监控,实现生产的无人化或少人管理。-MCGS environment, two examples of automatic control for the PLC (automotive production lines and water control), control system simulation, on-line automatic monitoring, production of unmanned or less to manage.
    2023-04-23 18:10:04下载
    积分:1
  • cpptooltip_src.zip TIP窗口的好东西。
    cpptooltip_src.zip TIP窗口的好东西。-cpptooltip_src.zip
    2022-04-26 19:04:44下载
    积分:1
  • mpeg 2 system 1,2,3 all user need to check it out
    mpeg 2 system 1,2,3 all user need to check it out-mpeg 2 system 1,2, 3 all user need to check it out
    2023-04-24 19:05:03下载
    积分:1
  • 7z1900-src
    说明:  7ZIP SDK / Full Source
    2020-11-05 21:59:50下载
    积分:1
  • MEEMD
    说明:  MEEMD改进经验模式分解例程,可以进行数据处理(MEEMD improves the empirical mode decomposition routine for data processing)
    2021-04-01 11:39:08下载
    积分:1
  • SM_paper_ICSI
    performance abalysis of generalized spatial modulation
    2017-10-26 21:11:18下载
    积分:1
  • potential
    说明:  基于人工势场的路径规划,可在代码中更改地图(Path planning based on artificial potential field, map can be changed in code)
    2020-04-06 16:29:17下载
    积分:1
  • VC++界面换肤实例+源码
    VC完美的界面换肤实例+源码,VC++界面换肤大多数仅仅提供Dll或者Lib,有代码的又有很多问题,这几日突然想到一个解决方案,有源码,有100多种皮肤可切换,就是采用Delphi里边成熟的界面组件vclskin,将它做成Dll来用,效果相当不错,调试源码注意事项:   1、实例中包含了所有的源代码,可以随便修改它,添加从资源加载皮肤,动态换肤的功能。   2、实例中的VclSkin4.93代码为其它公司成熟的产品,请下载后在24小时内删除。   3、皮肤有很多,可以到网络上下载,更有皮肤编辑工具,方便自定义。
    2022-03-06 02:06:12下载
    积分:1
  • 使用vhdl编写的一段程序。 主要功能是声音周期计算,以区别声音信号与噪音信号。...
    使用vhdl编写的一段程序。 主要功能是声音周期计算,以区别声音信号与噪音信号。-vhdl prepared by the use of a procedure. Its main function is voice cycle, in order to distinguish voice signal and the noise signal.
    2022-12-07 23:50:03下载
    积分:1
  • MUSIC
    基于频域MUSIC算法的DOA角度估计,采用matlab代码实现,代码中使用多通道二维频域结果进行计算(DOA angle estimation based on frequency domain MUSIC algorithm)
    2018-04-28 17:35:05下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载