登录
首页 » matlab » formation control

formation control

于 2019-04-20 发布
0 148
下载积分: 1 下载次数: 12

代码说明:

说明:  多智能体一致性编程,采用matlab编程(corporate control use matlab)

文件列表:

1\diyifangzhen1.m, 330 , 2017-04-12
1\gg1.slx, 28205 , 2017-04-12
1\gg1_sfun.mexw32, 110592 , 2017-03-31
1\gg1_sfun.mexw64, 241410 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\info\binfo.mat, 1752 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\info\chart2_guZQC0bUxRus8sBlC3CUQE.mat, 26566 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\c2_gg1.c, 122193 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\c2_gg1.h, 999 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\c2_gg1.obj, 158763 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.bat, 61 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.c, 8950 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.def, 43 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.exp, 43 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.h, 1434 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.lib, 282 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.lmk, 1809 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.lmko, 673 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun.obj, 9433 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun_debug_macros.h, 25609 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun_registry.c, 7903 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\gg1_sfun_registry.obj, 61149 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\lccstub.obj, 706 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\multiword_types.h, 4125 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\rtwtypes.h, 1098 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\rtwtypeschksum.mat, 1108 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src\sfun.map, 315075 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun\info\binfo.mat, 2833 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\info\chart2_2ZFctHOGr3PCTZRCvd5fdE.mat, 29058 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\c2_untitled.c, 140197 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\c2_untitled.h, 1049 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\c2_untitled.obj, 134789 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\multiword_types.h, 8232 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\rtwtypes.h, 455 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\rtwtypeschksum.mat, 1144 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.bat, 1938 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.c, 9142 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.exp, 657 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.h, 1469 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.lib, 1884 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.mak, 3750 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.map, 48277 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.mexw32.manifest, 381 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.mol, 64 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun.obj, 8724 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun_debug_macros.h, 26009 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun_registry.c, 8033 , 2017-04-12
1\slprj\_sfprj\untitled\_self\sfun\src\untitled_sfun_registry.obj, 39557 , 2017-04-12
1\Untitled.m, 34 , 2017-04-12
1\untitled_sfun.mexw32, 111104 , 2017-04-12
1\slprj\_sfprj\gg1\_self\sfun\html\chart2_guZQC0bUxRus8sBlC3CUQE, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun\html\chart2_2ZFctHOGr3PCTZRCvd5fdE, 0 , 2017-04-12
1\slprj\_sfprj\gg1\_self\sfun\html, 0 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\info, 0 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun\src, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun\html, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun\info, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun\src, 0 , 2019-04-18
1\slprj\_sfprj\gg1\_self\sfun, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self\sfun, 0 , 2019-04-18
1\slprj\_sfprj\gg1\_self, 0 , 2019-04-18
1\slprj\_sfprj\untitled\_self, 0 , 2019-04-18
1\slprj\_sfprj\gg1, 0 , 2019-04-18
1\slprj\_sfprj\untitled, 0 , 2019-04-18
1\slprj\_sfprj, 0 , 2019-04-18
1\slprj, 0 , 2019-04-18
1, 0 , 2019-04-18

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 命令模式-基本代码
    说明:  A minimal but extreme fast B+ tree indexing structure demo for billions of key-value storage
    2020-06-24 20:20:01下载
    积分:1
  • 次为用户信息的加密程序,以免用户的权益不受侵害。
    次为用户信息的加密程序,以免用户的权益不受侵害。-time information for users of encryption to prevent users from encroachment.
    2022-06-20 10:53:12下载
    积分:1
  • 最小二乘代码matlab
    说明:  运用Matlab编写最小二乘法拟合程序,并指定标记符颜色或者是标记符(小圆圈、正方形、棱形、正五角星、正六角星和四个方向的三角形)周边线条的颜色。取值在上表。 在所有的能产生线条的命令中,参数LineSepc可以定义线条的下面三个属性:线型、标记符号、颜色进行设置。(The least squares fitting program is programmed by using MATLAB, and the color of the marker or the color of the lines around the marker (small circle, square, prism, pentagon, hexagonal star and triangle in four directions) is specified. Take the values in the table above. In all commands that generate lines, the parameter LineSepc defines the following three attributes of a line: line type, marker symbol, and color.)
    2019-06-17 15:54:21下载
    积分:1
  • 模糊轨迹跟踪
    基于模糊控制的轨迹跟踪控制设计。可以开发思维,效果还不错(Trajectory tracking control design based on fuzzy control. You can develop your thinking. The result is pretty good.)
    2021-03-23 21:29:15下载
    积分:1
  • Proteus Design suite
    说明:  Proteus Design suite
    2019-11-25 11:47:56下载
    积分:1
  • CSpoint
    说明:  机载SAR在正侧视情况下,利用CS算法,对点目标成像,对面目标成像也是可以的。(In the positive side-looking airborne SAR case, the use of CS algorithm, pairs of point-target imaging, opposite the target imaging is also possible.)
    2010-03-26 19:19:51下载
    积分:1
  • 小波去噪软阈值和硬阈值的matlab仿真程序
    BA于MATLAB的小波包分析在信号降噪中的应用(Application of wavelet packet analysis of BA in MATLAB to signal denoising)
    2018-05-03 13:28:57下载
    积分:1
  • 蒙特卡罗
    基于时序蒙特卡洛的风电可靠性分析代码,可以计算风力发电机发出的功率,LOLP和EENS(Based on the time series Monte Carlo code for wind power reliability analysis, the power generated by wind turbines, LOLP and EENS can be calculated.)
    2019-03-05 18:53:13下载
    积分:1
  • PSO_ELM
    说明:  极限学习机是一类针对单层前馈神经网络设计的机器学习算法,其主要特点是隐含层节点参数可以是随机或人为给定的且不需要调整,学习过程仅需计算输出权重。ELM具有学习效率高和泛化能力强的优点,被广泛应用于分类、回归、聚类、特征学习等问题中。(Extreme learning machine for particle swarm optimization)
    2020-09-18 17:37:54下载
    积分:1
  • 贪婪算法解决背包问题
    贪婪算法解决背包问题-greedy algorithm to solve knapsack problem
    2022-01-26 04:23:16下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载