登录
首页 » Python » AbnormalBehaviorDetection-master

AbnormalBehaviorDetection-master

于 2019-04-23 发布
0 202
下载积分: 1 下载次数: 17

代码说明:

说明:  基于光流特征的监控视频异常行为检测 使用CNN,RNN在UCSD数据库中实现 使用Keras,python3.6(Abnormal Behavior Detection of Monitoring Video Based on Optical Flow Characteristics)

文件列表:

AbnormalBehaviorDetection-master, 0 , 2017-06-14
AbnormalBehaviorDetection-master\README.md, 196 , 2017-06-14
AbnormalBehaviorDetection-master\bak, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\cnn_abd.cpython-36.pyc, 1662 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\prepdata.cpython-36.pyc, 4685 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\cnn_abd.py, 1540 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\exec.py, 1227 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\prepdata.py, 5471 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_eval.py, 461 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_train.py, 1515 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_eval.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_train.py, 1270 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\abd_model_ini.cpython-36.pyc, 2468 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\abd_model_ini.py, 2405 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bilrnn_train.py, 2918 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\abd_model_ini.py, 2398 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bilrnn_train.py, 2358 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\cnn_abd.cpython-36.pyc, 122 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\prepdata.cpython-36.pyc, 3704 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\cnn_abd.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\exec.py, 969 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\prepdata.py, 4236 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\lstm_text_generation.py, 3350 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\rnn_lstm.py, 5064 , 2017-06-14
AbnormalBehaviorDetection-master\doc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\doc\arrary_decl.txt, 467 , 2017-06-14
AbnormalBehaviorDetection-master\doc\bicnn_struct.txt, 409 , 2017-06-14
AbnormalBehaviorDetection-master\doc\process.txt, 390 , 2017-06-14
AbnormalBehaviorDetection-master\doc\project_struct.txt, 380 , 2017-06-14
AbnormalBehaviorDetection-master\image, 0 , 2017-06-14
AbnormalBehaviorDetection-master\image\avg_picture.png, 27479 , 2017-06-14
AbnormalBehaviorDetection-master\image\resize.png, 26869 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture1.png, 24934 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture2.png, 26832 , 2017-06-14
AbnormalBehaviorDetection-master\script, 0 , 2017-06-14
AbnormalBehaviorDetection-master\script\gen_tag.cmd, 109 , 2017-06-14
AbnormalBehaviorDetection-master\src, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\abd_model_ini.cpython-36.pyc, 2667 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\src\abd_model_ini.py, 2778 , 2017-06-14
AbnormalBehaviorDetection-master\src\bicnn_train.py, 2060 , 2017-06-14
AbnormalBehaviorDetection-master\src\bilrnn_train.py, 3428 , 2017-06-14
AbnormalBehaviorDetection-master\src\eval.py, 2190 , 2017-06-14
AbnormalBehaviorDetection-master\src\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\src\try.py, 185 , 2017-06-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • PTToolResult
    说明:  百分百高仿小说下载站源码,减轻大家仿站的难度(100% high imitation novel download site source code, reduce the difficulty of everyone imitation station)
    2019-06-14 14:31:05下载
    积分:1
  • gqenx
    自己编的5种调制信号,pwm整流器的建模仿真,微分方程组数值解方法。( Own five modulation signal, Modeling and simulation pwm rectifier Numerical solution of differential equations method.)
    2017-05-19 17:22:01下载
    积分:1
  • miusiepen
    添加噪声处理,利用最小二乘法进行拟合多元非线性方程,研究生时的现代信号处理的作业。( Add noise processing, Multivariate least squares fitting method of nonlinear equations, Modern signal processing jobs when the graduate.)
    2017-05-23 00:02:33下载
    积分:1
  • MATLAB智能算法30个案例分析
    说明:  本书采用案例形式,以智能算法为主线,讲解了遗传算法.免疫算法,退火算法.粒子群算法,鱼群算法,蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现,本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景.MATLAB程序实现和扩展阅读四个部分组成,并配有完整的程序源码。(This book uses case form and takes intelligent algorithm as the main line to explain the matlab implementation of the most commonly used intelligent algorithms, such as genetic algorithm, immune algorithm, annealing algorithm, particle swarm optimization algorithm, fish swarm algorithm, ant colony algorithm and neural network algorithm. There are 30 cases in this book, and each case is a specific example of using intelligent algorithm to solve problems, All cases are composed of theoretical explanation, case background, matlab program implementation and extended reading, and complete program source code.)
    2020-10-15 21:20:30下载
    积分:1
  • qiantuihuidaiheyichuansuanf
    matlab上实现的前推回代算法,结合遗传算法,有效的电网系统无功功率的优化问题,采用的模型是22节点的电力系统模型。(Matlab implementation of the forward and backward generation algorithm, combined with genetic algorithm, an effective power system reactive power optimization problem, the model is a 22 node power system model.)
    2017-03-22 09:13:15下载
    积分:1
  • 测量字符串长度
    测量字符串长度,输入字符串,输出字符串的长度。(Measure the length of the string, input the string, output the length of the string.)
    2020-06-24 20:00:02下载
    积分:1
  • 16015315
    (1) 设计一个整数的补码类,有利于任意长整数的补码表示 及其运算; (2) 整数以十进制输入,对输入的数据要进行合法性检查; (3) 实现十进制数的补码转换、补码输出(输出格式为:每 8bit 一组,各组间以空格隔开)。 ((1) u8BBE u8BA1 u4E00 u4E2 u4E2 u657 u6570 u7654 u8865 u7801 u7C7B uFF0C u6709 u5229 u4E8E u4EFB u610F u657 U793A u53A u5136 u8F3 u8F3 u8F0 U5408 u6602 u03123 u03121 u8R03 U8F93 u51FA u683C u5F0F u4E3A uFF1A u6BCF 8bit u4E00 u7EC4 uFF0C u5404 u7EC4 u952F0 u4EE5 u7A7A u683C u9694 u5F00 uFF09 u3002)
    2017-05-20 11:22:37下载
    积分:1
  • UdpClient
    这是一个关于UDP客户端的代码,是用WINSOCHET编写的(This is a study on UDP client code is written WINSOCHET)
    2008-04-05 20:13:30下载
    积分:1
  • Camber_test
    比较完整的,基于圆拟合的光斑中心定位方法。可直接使用。(Relatively complete, based on the circle fitting algorithm facula Center.)
    2009-06-02 23:29:56下载
    积分:1
  • 4285
    主要是基于mtlab的程序,包含特征值与特征向量的提取、训练样本以及最后的识别,小波包分析提取振动信号中的特征频率。( Mainly based on the mtlab procedures, Contains the eigenvalue and eigenvector extraction, the training sample, and the final recognition, Wavelet packet analysis to extract vibration signal characteristic frequency.)
    2017-04-21 22:20:44下载
    积分:1
  • 696518资源总数
  • 104926会员总数
  • 6今日下载