登录
首页 » Python » AbnormalBehaviorDetection-master

AbnormalBehaviorDetection-master

于 2019-04-23 发布
0 234
下载积分: 1 下载次数: 17

代码说明:

说明:  基于光流特征的监控视频异常行为检测 使用CNN,RNN在UCSD数据库中实现 使用Keras,python3.6(Abnormal Behavior Detection of Monitoring Video Based on Optical Flow Characteristics)

文件列表:

AbnormalBehaviorDetection-master, 0 , 2017-06-14
AbnormalBehaviorDetection-master\README.md, 196 , 2017-06-14
AbnormalBehaviorDetection-master\bak, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\cnn_abd.cpython-36.pyc, 1662 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\prepdata.cpython-36.pyc, 4685 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\cnn_abd.py, 1540 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\exec.py, 1227 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\prepdata.py, 5471 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_eval.py, 461 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_train.py, 1515 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_eval.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_train.py, 1270 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\abd_model_ini.cpython-36.pyc, 2468 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\abd_model_ini.py, 2405 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bilrnn_train.py, 2918 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\abd_model_ini.py, 2398 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bilrnn_train.py, 2358 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\cnn_abd.cpython-36.pyc, 122 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\prepdata.cpython-36.pyc, 3704 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\cnn_abd.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\exec.py, 969 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\prepdata.py, 4236 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\lstm_text_generation.py, 3350 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\rnn_lstm.py, 5064 , 2017-06-14
AbnormalBehaviorDetection-master\doc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\doc\arrary_decl.txt, 467 , 2017-06-14
AbnormalBehaviorDetection-master\doc\bicnn_struct.txt, 409 , 2017-06-14
AbnormalBehaviorDetection-master\doc\process.txt, 390 , 2017-06-14
AbnormalBehaviorDetection-master\doc\project_struct.txt, 380 , 2017-06-14
AbnormalBehaviorDetection-master\image, 0 , 2017-06-14
AbnormalBehaviorDetection-master\image\avg_picture.png, 27479 , 2017-06-14
AbnormalBehaviorDetection-master\image\resize.png, 26869 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture1.png, 24934 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture2.png, 26832 , 2017-06-14
AbnormalBehaviorDetection-master\script, 0 , 2017-06-14
AbnormalBehaviorDetection-master\script\gen_tag.cmd, 109 , 2017-06-14
AbnormalBehaviorDetection-master\src, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\abd_model_ini.cpython-36.pyc, 2667 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\src\abd_model_ini.py, 2778 , 2017-06-14
AbnormalBehaviorDetection-master\src\bicnn_train.py, 2060 , 2017-06-14
AbnormalBehaviorDetection-master\src\bilrnn_train.py, 3428 , 2017-06-14
AbnormalBehaviorDetection-master\src\eval.py, 2190 , 2017-06-14
AbnormalBehaviorDetection-master\src\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\src\try.py, 185 , 2017-06-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB GUI设计入门与实战PPT
    说明:  MATLAB GUI设计入门与实战PPT(Matlab GUI design introduction and practical ppt)
    2020-11-14 11:19:43下载
    积分:1
  • _22dcda_C反汇编与逆向分析技术揭秘
    说明:  本书既是一本全面而系统地讲解反汇编与逆向分析技术的安全类专著,又是一部深刻揭示C++内部工作机制的程序设计类著作。理论与实践并重,理论部分系统地讲解了C++的各种语法特性和元素的逆向分析方法和流程,重在授人以渔;实践部分通过几个经典的案例演示了逆向分析技术的具体实施步骤和方法。(This book is not only a comprehensive and systematic security monograph on disassembly and reverse analysis technology, but also a program design monograph that profoundly reveals the internal working mechanism of C + +. In the theory part, the reverse analysis methods and processes of various grammatical features and elements of C + + are systematically explained, with emphasis on teaching people to fish; in the practice part, the specific implementation steps and methods of reverse analysis technology are demonstrated through several classic cases.)
    2019-12-12 21:02:33下载
    积分:1
  • GPS和INS联合导航matlab程序
    GPS和INS组合导航MATLAB程序,融合状态向量为平台误差角、位置误差、速度误差、陀螺仪漂移、陀螺仪马尔科夫偏差、加速度漂移共18维向量;测量采用速度-位置法;含有数据(GPS/INS fusion by kalman filter)
    2018-03-07 15:47:14下载
    积分:1
  • Camber_test
    比较完整的,基于圆拟合的光斑中心定位方法。可直接使用。(Relatively complete, based on the circle fitting algorithm facula Center.)
    2009-06-02 23:29:56下载
    积分:1
  • C语言程序设计--课本
    说明:  C语言程序设计,非常实用,入门级的编程资料(C language programming, very practical, entry-level programming materials)
    2020-06-24 10:00:02下载
    积分:1
  • databricks-spark-reference-applications.pdf.tar
    摘要: 现有的聚类算法比如 CluStream 是基于 k-means 算法的。这些算法不能够发现任 意形状的簇以及不能处理离群点。 解决上述问题,本文提出了 而且, 它需要预先知道 k 值和用户指定的时间窗口。 为了 分将数据映射到一个网格, D-Stream 算法,它是基于密度的算法。这个算法用一个在线部 在离线部分计算网格的密度然后基于密度形成簇。 度衰减技术来捕获数据流的动态变化。 为了探索衰减因子、 数据密度以及簇结构之间的关系, 我们的算法能够有效的并且有效率地实时调整簇。 群点的稀疏网格是合理的, 算法采用了密 而且, 我们用理论证明了移除那些属于离 从而提高了系统的时间和空间效率。 该技术能聚类高速的数据流 而不损失聚类质量。 实验结果表明我们的算法在聚类质量和效率是有独特的优势, 并且能够 发现任意形状的簇,以及能准确地识别实时数据流的演化行为(Abstract: Existing clustering algorithms such as CluStream are based on the k-means algorithm. These algorithms can not be found Meaningful clusters and can not handle outliers. To solve the above problems, this paper presents)
    2017-09-03 11:05:23下载
    积分:1
  • Adc
    说明:  实现对逆变器的三相电流、三相电压、三相IGBT温度、三相的频率等采样,涉及了应用层程序和底层程序(Sampling of three-phase current, three-phase voltage, three-phase IGBT temperature and three-phase frequency of inverters is realized, which involves application layer program and bottom layer program.)
    2020-06-20 10:00:01下载
    积分:1
  • 新标准C++习题解答
    说明:  新标准C++程序设计教程/重点大学计算机专业系列教材配套习题解答(New Standard C++ Programming Course/Solutions to Exercises in Computer Series Textbooks of Key Universities)
    2021-01-05 20:38:53下载
    积分:1
  • a
    说明:  求解一些数学中最常见遇到的非线性最优化的模型,比如信号灯的优化配时问题求解等等。(conclusions)
    2009-05-21 00:23:38下载
    积分:1
  • MUSIC算法MATLAB程序
    说明:  MUSIC算法MATLAB程序 music算法的matlab实现,可以直接由信号的快拍采样计算功率谱。可以用来分析多普勒频移(MUSIC algorithm matlab program The matlab implementation of music algorithm can directly calculate the power spectrum from the snapshot sampling of the signal. Can be used to analyze Doppler shift)
    2019-10-27 16:19:28下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载