登录
首页 » Python » AbnormalBehaviorDetection-master

AbnormalBehaviorDetection-master

于 2019-04-23 发布
0 215
下载积分: 1 下载次数: 17

代码说明:

说明:  基于光流特征的监控视频异常行为检测 使用CNN,RNN在UCSD数据库中实现 使用Keras,python3.6(Abnormal Behavior Detection of Monitoring Video Based on Optical Flow Characteristics)

文件列表:

AbnormalBehaviorDetection-master, 0 , 2017-06-14
AbnormalBehaviorDetection-master\README.md, 196 , 2017-06-14
AbnormalBehaviorDetection-master\bak, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\cnn_abd.cpython-36.pyc, 1662 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\prepdata.cpython-36.pyc, 4685 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\cnn_abd.py, 1540 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\exec.py, 1227 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\prepdata.py, 5471 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_eval.py, 461 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_train.py, 1515 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_eval.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_train.py, 1270 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\abd_model_ini.cpython-36.pyc, 2468 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\abd_model_ini.py, 2405 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bilrnn_train.py, 2918 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\abd_model_ini.py, 2398 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bilrnn_train.py, 2358 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\cnn_abd.cpython-36.pyc, 122 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\prepdata.cpython-36.pyc, 3704 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\cnn_abd.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\exec.py, 969 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\prepdata.py, 4236 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\lstm_text_generation.py, 3350 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\rnn_lstm.py, 5064 , 2017-06-14
AbnormalBehaviorDetection-master\doc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\doc\arrary_decl.txt, 467 , 2017-06-14
AbnormalBehaviorDetection-master\doc\bicnn_struct.txt, 409 , 2017-06-14
AbnormalBehaviorDetection-master\doc\process.txt, 390 , 2017-06-14
AbnormalBehaviorDetection-master\doc\project_struct.txt, 380 , 2017-06-14
AbnormalBehaviorDetection-master\image, 0 , 2017-06-14
AbnormalBehaviorDetection-master\image\avg_picture.png, 27479 , 2017-06-14
AbnormalBehaviorDetection-master\image\resize.png, 26869 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture1.png, 24934 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture2.png, 26832 , 2017-06-14
AbnormalBehaviorDetection-master\script, 0 , 2017-06-14
AbnormalBehaviorDetection-master\script\gen_tag.cmd, 109 , 2017-06-14
AbnormalBehaviorDetection-master\src, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\abd_model_ini.cpython-36.pyc, 2667 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\src\abd_model_ini.py, 2778 , 2017-06-14
AbnormalBehaviorDetection-master\src\bicnn_train.py, 2060 , 2017-06-14
AbnormalBehaviorDetection-master\src\bilrnn_train.py, 3428 , 2017-06-14
AbnormalBehaviorDetection-master\src\eval.py, 2190 , 2017-06-14
AbnormalBehaviorDetection-master\src\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\src\try.py, 185 , 2017-06-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SlidingModeControl
    滑模控制的经典算例程序,可以帮助初学者快速掌握滑模控制的编程思想(Sliding mode control procedures for the classic examples that can help beginners master the sliding mode control Express programming thought)
    2009-02-25 09:56:47下载
    积分:1
  • MATLAB3
    包括如下源码:2.3-元胞数组的使用方法、2.4-结构数组的使用方法、2.5-矩阵的使用方法、2.6-字符串的操作方法、2.7-判断函数的使用方法(Including the following source code: the use of the 2.3- cell array, the use of the 2.4- structure array, the use of the 2.5- matrix, the operation method of the 2.6- string, and the use of the 2.7- judgment function)
    2018-05-07 09:04:44下载
    积分:1
  • databricks-spark-reference-applications.pdf.tar
    摘要: 现有的聚类算法比如 CluStream 是基于 k-means 算法的。这些算法不能够发现任 意形状的簇以及不能处理离群点。 解决上述问题,本文提出了 而且, 它需要预先知道 k 值和用户指定的时间窗口。 为了 分将数据映射到一个网格, D-Stream 算法,它是基于密度的算法。这个算法用一个在线部 在离线部分计算网格的密度然后基于密度形成簇。 度衰减技术来捕获数据流的动态变化。 为了探索衰减因子、 数据密度以及簇结构之间的关系, 我们的算法能够有效的并且有效率地实时调整簇。 群点的稀疏网格是合理的, 算法采用了密 而且, 我们用理论证明了移除那些属于离 从而提高了系统的时间和空间效率。 该技术能聚类高速的数据流 而不损失聚类质量。 实验结果表明我们的算法在聚类质量和效率是有独特的优势, 并且能够 发现任意形状的簇,以及能准确地识别实时数据流的演化行为(Abstract: Existing clustering algorithms such as CluStream are based on the k-means algorithm. These algorithms can not be found Meaningful clusters and can not handle outliers. To solve the above problems, this paper presents)
    2017-09-03 11:05:23下载
    积分:1
  • 斐波那契数列取余
    对斐波那契数列取余,输入长度,输出取余结果。(Redundancy of Fibonacci Sequences)
    2020-06-24 20:00:02下载
    积分:1
  • PTToolResult
    说明:  百分百高仿小说下载站源码,减轻大家仿站的难度(100% high imitation novel download site source code, reduce the difficulty of everyone imitation station)
    2019-06-14 14:31:05下载
    积分:1
  • MOSGA2_3
    多目标优化排序选择法主程序,算法的多目标程序(Multi objective optimization sorting selection method, the main program, the algorithm of multi-objective program)
    2017-10-20 19:32:21下载
    积分:1
  • 自抗扰控制器
    此为韩京清老师的自抗扰仿真程序,含有eso.m、td.m、nlsef.m三个文件(AN AUTOMATIC DISTURBANCE REJECTION SIMULATION PROGRAM FOR TEACHER HAN Jingqing)
    2019-01-14 19:09:42下载
    积分:1
  • chap7 Matlab Code
    说明:  高速无人驾驶模型预测控制,无人驾驶车辆模型预测控制第二版第七章(High speed driverless model predictive control, driverless vehicle model predictive control version 2 Chapter 7)
    2020-05-07 21:39:35下载
    积分:1
  • 新建 文档
    外汇网格交易源码,提供给大家,于大家一起学习(Foreign exchange grid transaction source code)
    2018-04-08 10:06:39下载
    积分:1
  • code
    说明:  ofdm通信系统的simulink模型,采用bpsk调制。(Simulink model of OFDM communication system)
    2021-04-15 17:03:01下载
    积分:1
  • 696518资源总数
  • 105531会员总数
  • 4今日下载