登录
首页 » Python » AbnormalBehaviorDetection-master

AbnormalBehaviorDetection-master

于 2019-04-23 发布
0 235
下载积分: 1 下载次数: 17

代码说明:

说明:  基于光流特征的监控视频异常行为检测 使用CNN,RNN在UCSD数据库中实现 使用Keras,python3.6(Abnormal Behavior Detection of Monitoring Video Based on Optical Flow Characteristics)

文件列表:

AbnormalBehaviorDetection-master, 0 , 2017-06-14
AbnormalBehaviorDetection-master\README.md, 196 , 2017-06-14
AbnormalBehaviorDetection-master\bak, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\cnn_abd.cpython-36.pyc, 1662 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\__pycache__\prepdata.cpython-36.pyc, 4685 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\cnn_abd.py, 1540 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\exec.py, 1227 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.1\prepdata.py, 5471 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_eval.py, 461 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\bicnn_train.py, 1515 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2.1\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\abd_model_ini.py, 1789 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_eval.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\bicnn_train.py, 1270 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\prepdata.py, 4401 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.2\try.py, 558 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\abd_model_ini.cpython-36.pyc, 2468 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\abd_model_ini.py, 2405 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\bilrnn_train.py, 2918 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3.1_rnndone\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\abd_model_ini.cpython-36.pyc, 1933 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\__pycache__\prepdata.cpython-36.pyc, 4200 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\abd_model_ini.py, 2398 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bicnn_train.py, 1984 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\bilrnn_train.py, 2358 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\eval.py, 823 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0.3_rnn_cnn%2B\try.py, 137 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\cnn_abd.cpython-36.pyc, 122 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\__pycache__\prepdata.cpython-36.pyc, 3704 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\cnn_abd.py, 0 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\exec.py, 969 , 2017-06-14
AbnormalBehaviorDetection-master\bak\src0\prepdata.py, 4236 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\lstm_text_generation.py, 3350 , 2017-06-14
AbnormalBehaviorDetection-master\demosrc\rnn_lstm.py, 5064 , 2017-06-14
AbnormalBehaviorDetection-master\doc, 0 , 2017-06-14
AbnormalBehaviorDetection-master\doc\arrary_decl.txt, 467 , 2017-06-14
AbnormalBehaviorDetection-master\doc\bicnn_struct.txt, 409 , 2017-06-14
AbnormalBehaviorDetection-master\doc\process.txt, 390 , 2017-06-14
AbnormalBehaviorDetection-master\doc\project_struct.txt, 380 , 2017-06-14
AbnormalBehaviorDetection-master\image, 0 , 2017-06-14
AbnormalBehaviorDetection-master\image\avg_picture.png, 27479 , 2017-06-14
AbnormalBehaviorDetection-master\image\resize.png, 26869 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture1.png, 24934 , 2017-06-14
AbnormalBehaviorDetection-master\image\subavg_picture2.png, 26832 , 2017-06-14
AbnormalBehaviorDetection-master\script, 0 , 2017-06-14
AbnormalBehaviorDetection-master\script\gen_tag.cmd, 109 , 2017-06-14
AbnormalBehaviorDetection-master\src, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__, 0 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\abd_model_ini.cpython-36.pyc, 2667 , 2017-06-14
AbnormalBehaviorDetection-master\src\__pycache__\prepdata.cpython-36.pyc, 6144 , 2017-06-14
AbnormalBehaviorDetection-master\src\abd_model_ini.py, 2778 , 2017-06-14
AbnormalBehaviorDetection-master\src\bicnn_train.py, 2060 , 2017-06-14
AbnormalBehaviorDetection-master\src\bilrnn_train.py, 3428 , 2017-06-14
AbnormalBehaviorDetection-master\src\eval.py, 2190 , 2017-06-14
AbnormalBehaviorDetection-master\src\prepdata.py, 6636 , 2017-06-14
AbnormalBehaviorDetection-master\src\try.py, 185 , 2017-06-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab.code
    精通MATLAB 7 课本代码 读者可根据文件夹名找到相应章节的实例。每章的实例均已经通过了实际调试。(Proficient in MATLAB 7 textbook code)
    2018-09-20 14:18:09下载
    积分:1
  • 《智能优化算法及其MATLAB实例-(第2版)》
    课本所有章节的代码,对应课本每章节每个案例代码均有,可以放心使用(Code for all chapters of the textbook)
    2021-01-21 10:38:42下载
    积分:1
  • BESO
    双向性渐进结构优化方法源代码,双向性渐进结构优化方法是YImin Xie教授提出的拓扑优化优化方法,是目前几种流行优化方法之一。(The code of Bidirectional progressive Structure optimization method.)
    2021-02-26 00:59:37下载
    积分:1
  • 200717105422
    LabVIEW学习资料,如何制作动态链接库,以及如何调用(LabVIEW learning materials, how to create dynamic-link library, and how to call the)
    2009-10-18 15:16:45下载
    积分:1
  • vc++6.0数据库编程大全(代
    vc++6.0数据库编程大全一书得各个章节得源码,比较详细.可以仔细参照学习!(Detail codes for each paragraph of <<Full-scale of VC++6.0 data base program>>)
    2020-06-26 08:20:02下载
    积分:1
  • 线性矩阵不等式(LMI)的_MATLAB求解
    LMI 控制工具箱,采用内点法的 LMI 求解器,这些求解器比经典的凸优化算法速度有了显著提高。另方方面,它采用了有效的LMI结构化表示,在求解和计算领域做出了重大贡献。(The LMI control toolbox uses the LMI algorithm of the interior point method. These solvers have significantly improved the speed of the classical convex optimization algorithm. On the other hand, It uses effective LMI structured representation, and has made significant contributions in solving and computing fields.)
    2018-05-20 14:06:38下载
    积分:1
  • hrms_Attendance_AbsentSummary_Departmentwise
    vfsdfg dgrdg grgdgd fvfvfv
    2017-05-18 20:18:33下载
    积分:1
  • vmadt
    计算加权加速度,计算目标和海洋回波的功率谱密度,用于时频分析算法。( Weighted acceleration, Calculating a target and ocean echo power spectral density, For time-frequency analysis algorithm.)
    2017-05-11 17:14:07下载
    积分:1
  • chap7 Matlab Code
    说明:  高速无人驾驶模型预测控制,无人驾驶车辆模型预测控制第二版第七章(High speed driverless model predictive control, driverless vehicle model predictive control version 2 Chapter 7)
    2020-05-07 21:39:35下载
    积分:1
  • 数量生态学-R语言应用全
    说明:  本资源为《数量生态学》书中的R语言源代码,下载解压后可以使用。(This resource is the R language source code in the book "quantitative Ecology", which can be used after downloading and decompressing.)
    2019-03-01 10:02:10下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载