登录
首页 » Python » Python与机器学习实战

Python与机器学习实战

于 2019-05-13 发布
0 288
下载积分: 1 下载次数: 4

代码说明:

说明:  python与机器学习实战教程,机器学习通过Python语言实现,通过大量的实例再现机器学习强大的生命力(Python and Machine Learning Practical Course. Machine Learning is realized by Python Language, and the powerful vitality of machine learning is reappeared through a large number of examples.)

文件列表:

Python与机器学习实战\MachineLearning-master\.gitignore, 1184 , 2018-01-30
Python与机器学习实战\MachineLearning-master\a_FirstExample\README.md, 229 , 2018-01-30
Python与机器学习实战\MachineLearning-master\a_FirstExample\Regression.py, 1038 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\Basic.py, 3044 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\GaussianNB.py, 4093 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\MergedNB.py, 5625 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\MultinomialNB.py, 5690 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\__pycache__\Basic.cpython-36.pyc, 4538 , 2018-02-02
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\README.md, 1008 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\Basic.py, 2985 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\GaussianNB.py, 3117 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\MergedNB.py, 4991 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\MultinomialNB.py, 4958 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Cluster.py, 5614 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Node.py, 11439 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\README.md, 1120 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\TestTree.py, 3207 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Tree.py, 10574 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\AdaBoost.py, 4059 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\RandomForest.py, 3789 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\README.md, 729 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\TestEnsemble.py, 2578 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\KP.py, 3672 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\LinearSVM.py, 10163 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\Perceptron.py, 2187 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\README.md, 2350 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\SVM.py, 9669 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\TestLinear.py, 1262 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\TestSVM.py, 3267 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Layers.py, 6063 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Networks.py, 12872 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Optimizers.py, 3492 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\README.md, 111 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Test.py, 662 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\CIFAR10.py, 1273 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Layers.py, 14550 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Mnist.py, 1369 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Networks.py, 14976 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Optimizers.py, 2409 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\README.md, 112 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\EmbedRNN.py, 3155 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\Mnist.py, 1758 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\Playground.py, 1682 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\RNN.py, 9396 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\SpRNN.py, 3727 , 2018-01-30
Python与机器学习实战\MachineLearning-master\i_Clustering\KMeans.py, 3024 , 2018-01-30
Python与机器学习实战\MachineLearning-master\i_Clustering\README.md, 735 , 2018-01-30
Python与机器学习实战\MachineLearning-master\LICENSE, 1057 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Layers.py, 30782 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Networks.py, 35826 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Optimizers.py, 4330 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Errors.py, 130 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\NN.py, 195 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Auto\Layers.py, 12629 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Auto\Networks.py, 29755 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Basic\Layers.py, 15071 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Basic\Networks.py, 31767 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Optimizers.py, 4342 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Layers.py, 23239 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Networks.py, 33880 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Optimizers.py, 4344 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\README.md, 2544 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\Basic\Test.py, 1360 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\Basic\Vis.py, 862 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Auto\Test.py, 1039 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Auto\Vis.py, 869 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Basic\Test.py, 998 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Basic\Vis.py, 833 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\.DS_Store, 6148 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\Test.py, 1319 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\Vis.py, 833 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\CIFAR10.py, 2327 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\Mnist.py, 1206 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\Tensorboard.py, 1789 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Layers.py, 15703 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Networks.py, 49450 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Optimizers.py, 2339 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\MLP.ipynb, 139095 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\NN.ipynb, 52064 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\Util.py, 1748 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\numba\zh-cn\Basic.ipynb, 11505 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\numba\zh-cn\CNN.ipynb, 8959 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\README.md, 87 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Kernel Methods.ipynb, 196445 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\LinearSVM.ipynb, 420104 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Perceptron.ipynb, 73282 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Util.py, 2517 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Functions.py, 2643 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Methods.py, 20665 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\README.md, 332 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Test.py, 9188 , 2018-01-30
Python与机器学习实战\MachineLearning-master\README.md, 423 , 2018-01-30
Python与机器学习实战\MachineLearning-master\requirements.txt, 4694 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Cell.py, 863 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Generator.py, 545 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\Mnist.py, 2181 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\Operations.py, 10244 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\UnitTest.py, 6432 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Wrapper.py, 9437 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Util\Bases.py, 39048 , 2018-01-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • sdsdsdsad
    其中包括图像压缩的基本编码方法如Huffman编码算术编码\JPEG 2000H.261压缩编码标准小波变换编码\运动估计算法视频图象采集的VC实现等.-including the basic image compression coding methods as Huffman coding arithmetic coding JPEG 2 000 H.261 coding standard Wavelet Transform Coding motion estimation algorithm Video Image Acquisition is the VC now other(including the basic image compression coding methods as Huffman coding arithmetic coding JPEG 2 000 H.261 coding standard Wavelet Transform Coding motion estimation algorithm Video Image Acquisition is the VC now other)
    2010-03-13 08:43:10下载
    积分:1
  • 矩阵分析与应用习题解答.pdf
    矩阵分析与应用(张贤达)的习题解答的答案,个人感觉还是比较详细的(The answer of matrix analysis and application (Zhang Xianda))
    2018-06-11 22:36:24下载
    积分:1
  • Mobile-Channel-Characteristics
    Mobile Channel Characteristics, 移动通信信道的很好的一本书,经典书籍。(Mobile Channel Characteristics, mobile communication channel a good book, classic books.)
    2010-01-18 21:50:36下载
    积分:1
  • englishmoban
    英文投稿信的几个模版和实例(Received a letter in English a few templates and examples)
    2007-11-24 14:21:27下载
    积分:1
  • Gao_FE realization of thermo VUMAT
    article about umat abaqus
    2017-12-01 01:14:19下载
    积分:1
  • MC1496 multisim实现AM
    说明:  高频实验Multisim仿真:一、混频器(原理图、信号输入输出波形与频率)二、调幅波的解调(原理图及全载波调幅信号的解调)三、惰性失真及底部切削失真(Multisim simulation of high frequency experiment: 1. Mixer (schematic diagram, signal input and output waveform and frequency) 2. Demodulation of amplitude modulation wave (schematic diagram and demodulation of full-carrier amplitude modulation signal) 3. Inert distortion and bottom cutting distortion)
    2020-12-05 16:59:23下载
    积分:1
  • MIMO
    学习MIMO的入门课件!能够很快的了解MIMO的原理!写的很详细!(MIMO-entry learning courseware! Be able to quickly understand the principle of MIMO! Written in great detail!)
    2009-09-21 20:29:46下载
    积分:1
  • 20071229wgzzjc
    本教程包含了(WPE,FPE)编程类(动作式,单机游戏改式,盗号工具制作,加速式外挂,网络游戏数据修改),还有丰富源码。-(This includes a tutorial (WPE, FPE) programming type (action-style, stand-alone game to style, instrument produced ones to speed up the style plug-ins, online game data modifications), have a rich source.--)
    2009-04-02 14:51:15下载
    积分:1
  • 把手教你学CAN总线》.pdf
    说明:  手把手带你学can 让你轻松学习can编程与单片机(Hands take you to learn can so that you can easily learn can programming and microcontroller)
    2020-09-21 10:37:53下载
    积分:1
  • yaifuigang
    SNR largest independent component analysis algorithm, Fractal dimension calculation algorithm matlab code blankets, Target can be extracted in a picture you want.
    2017-09-11 22:02:08下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载