登录
首页 » Python » Python与机器学习实战

Python与机器学习实战

于 2019-05-13 发布
0 298
下载积分: 1 下载次数: 4

代码说明:

说明:  python与机器学习实战教程,机器学习通过Python语言实现,通过大量的实例再现机器学习强大的生命力(Python and Machine Learning Practical Course. Machine Learning is realized by Python Language, and the powerful vitality of machine learning is reappeared through a large number of examples.)

文件列表:

Python与机器学习实战\MachineLearning-master\.gitignore, 1184 , 2018-01-30
Python与机器学习实战\MachineLearning-master\a_FirstExample\README.md, 229 , 2018-01-30
Python与机器学习实战\MachineLearning-master\a_FirstExample\Regression.py, 1038 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\Basic.py, 3044 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\GaussianNB.py, 4093 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\MergedNB.py, 5625 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\MultinomialNB.py, 5690 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Original\__pycache__\Basic.cpython-36.pyc, 4538 , 2018-02-02
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\README.md, 1008 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\Basic.py, 2985 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\GaussianNB.py, 3117 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\MergedNB.py, 4991 , 2018-01-30
Python与机器学习实战\MachineLearning-master\b_NaiveBayes\Vectorized\MultinomialNB.py, 4958 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Cluster.py, 5614 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Node.py, 11439 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\README.md, 1120 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\TestTree.py, 3207 , 2018-01-30
Python与机器学习实战\MachineLearning-master\c_CvDTree\Tree.py, 10574 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\AdaBoost.py, 4059 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\RandomForest.py, 3789 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\README.md, 729 , 2018-01-30
Python与机器学习实战\MachineLearning-master\d_Ensemble\TestEnsemble.py, 2578 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\KP.py, 3672 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\LinearSVM.py, 10163 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\Perceptron.py, 2187 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\README.md, 2350 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\SVM.py, 9669 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\TestLinear.py, 1262 , 2018-01-30
Python与机器学习实战\MachineLearning-master\e_SVM\TestSVM.py, 3267 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Layers.py, 6063 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Networks.py, 12872 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Optimizers.py, 3492 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\README.md, 111 , 2018-01-30
Python与机器学习实战\MachineLearning-master\f_NN\Test.py, 662 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\CIFAR10.py, 1273 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Layers.py, 14550 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Mnist.py, 1369 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Networks.py, 14976 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\Optimizers.py, 2409 , 2018-01-30
Python与机器学习实战\MachineLearning-master\g_CNN\README.md, 112 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\EmbedRNN.py, 3155 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\Mnist.py, 1758 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\Playground.py, 1682 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\RNN.py, 9396 , 2018-01-30
Python与机器学习实战\MachineLearning-master\h_RNN\SpRNN.py, 3727 , 2018-01-30
Python与机器学习实战\MachineLearning-master\i_Clustering\KMeans.py, 3024 , 2018-01-30
Python与机器学习实战\MachineLearning-master\i_Clustering\README.md, 735 , 2018-01-30
Python与机器学习实战\MachineLearning-master\LICENSE, 1057 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Layers.py, 30782 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Networks.py, 35826 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Basic\Optimizers.py, 4330 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Errors.py, 130 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\NN.py, 195 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Auto\Layers.py, 12629 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Auto\Networks.py, 29755 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Basic\Layers.py, 15071 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Basic\Networks.py, 31767 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\Optimizers.py, 4342 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Layers.py, 23239 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Networks.py, 33880 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\PyTorch\__Dev\Optimizers.py, 4344 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\README.md, 2544 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\Basic\Test.py, 1360 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\Basic\Vis.py, 862 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Auto\Test.py, 1039 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Auto\Vis.py, 869 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Basic\Test.py, 998 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\Basic\Vis.py, 833 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\.DS_Store, 6148 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\Test.py, 1319 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\PyTorch\__Dev\Vis.py, 833 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\CIFAR10.py, 2327 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\Mnist.py, 1206 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\Test\TF\Tensorboard.py, 1789 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Layers.py, 15703 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Networks.py, 49450 , 2018-01-30
Python与机器学习实战\MachineLearning-master\NN\TF\Optimizers.py, 2339 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\MLP.ipynb, 139095 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\NN.ipynb, 52064 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\NN\zh-cn\Util.py, 1748 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\numba\zh-cn\Basic.ipynb, 11505 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\numba\zh-cn\CNN.ipynb, 8959 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\README.md, 87 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Kernel Methods.ipynb, 196445 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\LinearSVM.ipynb, 420104 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Perceptron.ipynb, 73282 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Notebooks\SVM\zh-cn\Util.py, 2517 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Functions.py, 2643 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Methods.py, 20665 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\README.md, 332 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Opt\Test.py, 9188 , 2018-01-30
Python与机器学习实战\MachineLearning-master\README.md, 423 , 2018-01-30
Python与机器学习实战\MachineLearning-master\requirements.txt, 4694 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Cell.py, 863 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Generator.py, 545 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\Mnist.py, 2181 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\Operations.py, 10244 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Test\UnitTest.py, 6432 , 2018-01-30
Python与机器学习实战\MachineLearning-master\RNN\Wrapper.py, 9437 , 2018-01-30
Python与机器学习实战\MachineLearning-master\Util\Bases.py, 39048 , 2018-01-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • xxx
    新型基于MRAS 的永磁同步电机(Novel based on the MRAS PMSM)
    2007-12-26 12:12:20下载
    积分:1
  • book
    VB书籍 推荐之作 力顶 有需要的速度下载(VB)
    2009-09-16 08:55:58下载
    积分:1
  • Machine-Learning-in-Action
    机器学习实战中文版,基于Python语言,适合初学者(Machine Learning in Action(Python))
    2016-06-10 23:41:37下载
    积分:1
  • UsersManual_en
    digsilent软件学习指导书籍,中文版的,比较难找。(Digsilent software learning guide books, the Chinese version, more difficult to find.)
    2017-02-13 10:22:16下载
    积分:1
  • ARM指令集
    arm architecture document. nice book. welcome to download
    2020-06-20 21:20:02下载
    积分:1
  • znjs
    这本书很可能让你以为又是一个科学幻想,可能你会说,同类的东西已经看得太多了。 因此,你现在也许会错过这本书,但是,将来你一定会拼命去找这本书,而那时就太晚了。 我的同事告诉我,她看过一个关于超级智能机器的影片。一开始,它们随意屠杀人类。我问她,影片后来结局是什么?她说,机器人被人类感动了,成了人类的朋友。于是我再问她,人类会被蚊子感动吗?会和岩石成为朋友吗?想象远远不及真实!于是,她陷入了沉思…… 一般的科幻片中描述的人工智能机器,它们虽然在很多方面强于人类,但是,总体和人类的差距不大,大致也就是人类和狗的差距。那么,它们最后被人类感动,会和人类成为朋友是很合理的。就像人类会被狗感动,和狗成为朋友一样。但是,那也许只是20或者40年后的智能机器的情况。 不远的将来,人工智能机器的智能将是人类的万亿个万亿倍,它们面对我们,并不像我们面对狗,而是如同我们面对蚊子、跳蚤甚至岩石,当它们消灭我们的时候,如同我们将蚊子拍死,将臭虫冲进下水道,谁会在消灭跳蚤的时候觉得这样太残忍了呢?! 这也许是人类逃脱不了的宿命,也是德·加里斯教授认为有责任写这本书,我们认为有责任出版这本科学伦理图书的原因。(This book is likely to make you think it is a science fiction, perhaps you may say, the same thing has seen too many. Therefore, you may now miss this book, but in the future you will be hard to find this book, and then it s too late. My colleague told me that she saw a movie about super-intelligent machines. Beginning, they are free to slaughter humans. I asked her later what the ending movie? She said that the robot touched by humans, became the friend of mankind. So I ask her, touched by humans by mosquitoes do? Council and rocks become friends? Imagine far less true! So she mused... A general description of science fiction artificial intelligence machines, although in many respects they are stronger than humans, however, little difference between the overall and humans, which is roughly the gap between humans and dogs. Well, they finally touched by humans, and humans will become friends is very reasonable. Just like humans dogs will be moved, and the dog became friends. But that)
    2013-10-25 12:54:25下载
    积分:1
  • multiagent
    多智能体模型与实验,是进行多智能体理论与实验的科研书(Multi-agent model and experiment, is a multi-agent theory and experimental research book)
    2020-08-23 14:07:50下载
    积分:1
  • KPCA_RVM
    关于关联向量机应用的最新文献! 提出了一种核主元分析(KPCA)和关联向量机(RVM)相结合的组合建模方法。KPCA-RVM采用KPCA对原始自变量进行非线性变换并提取主成分,形成特征自变量 采用RVM,对KPCA变换后的样本数据进行回归建模,并根据模型的预报能力自适应的确定参与回归的最佳特征变量个数,消除冗余信息干扰,获得强非线性表达能力且预报性能良好的模型。并将KPCA-RVM应用于PTA装置对羧基苯甲醛(4-CBA)含量的软测量建模,结果表明该方法预测精度高于PCA-RVM和RVM。(A novel modeling method integrated KPCA with RVM was proposed. The kernel primary component analysis (KPCA) was employed to identify the principal components from the nonlinear transform data of independent variables, which were regarded as character variables. Regression between character variables and dependent variables was done based on RVM, and the optimal number of the character variables was adaptively determined according to the generalization performance of the regression model. Thus, KPCA-RVM meth...)
    2020-06-29 05:40:01下载
    积分:1
  • text_mining
    文本挖掘道在分类,聚类上的应用。包含理论与实例。英文影印版。(Application for text mining on classification and clustering, including theory and examples.)
    2010-12-06 12:00:29下载
    积分:1
  • CPPPrimer
    这本书是对C ++的知识点提供了一个参考,提供电子版更方便的访问,(This book is on the C++, the details of the C++ knowledge points to provide electronic version more convenient access,)
    2016-11-06 13:06:51下载
    积分:1
  • 696516资源总数
  • 106432会员总数
  • 11今日下载