登录
首页 » matlab » 数字识别

数字识别

于 2019-05-26 发布
0 187
下载积分: 1 下载次数: 5

代码说明:

说明:  使用matlab编码,人工神经网络手写体检测(Handwriting Detection Using Matlab Coding and Artificial Neural Network)

文件列表:

数字识别, 0 , 2019-05-06
数字识别\data, 0 , 2019-05-06
数字识别\data\0, 0 , 2019-05-06
数字识别\data\0\0_1.bmp, 1862 , 2006-10-13
数字识别\data\0\0_10.bmp, 1862 , 2006-10-13
数字识别\data\0\0_100.bmp, 1862 , 2006-10-13
数字识别\data\0\0_101.bmp, 1862 , 2006-10-13
数字识别\data\0\0_102.bmp, 1862 , 2006-10-13
数字识别\data\0\0_103.bmp, 1862 , 2006-10-13
数字识别\data\0\0_104.bmp, 1862 , 2006-10-13
数字识别\data\0\0_105.bmp, 1862 , 2006-10-13
数字识别\data\0\0_106.bmp, 1862 , 2006-10-13
数字识别\data\0\0_107.bmp, 1862 , 2006-10-13
数字识别\data\0\0_108.bmp, 1862 , 2006-10-13
数字识别\data\0\0_109.bmp, 1862 , 2006-10-13
数字识别\data\0\0_11.bmp, 1862 , 2006-10-13
数字识别\data\0\0_110.bmp, 1862 , 2006-10-13
数字识别\data\0\0_111.bmp, 1862 , 2006-10-13
数字识别\data\0\0_112.bmp, 1862 , 2006-10-13
数字识别\data\0\0_113.bmp, 1862 , 2006-10-13
数字识别\data\0\0_114.bmp, 1862 , 2006-10-13
数字识别\data\0\0_115.bmp, 1862 , 2006-10-13
数字识别\data\0\0_116.bmp, 1862 , 2006-10-13
数字识别\data\0\0_117.bmp, 1862 , 2006-10-13
数字识别\data\0\0_118.bmp, 1862 , 2006-10-13
数字识别\data\0\0_119.bmp, 1862 , 2006-10-13
数字识别\data\0\0_12.bmp, 1862 , 2006-10-13
数字识别\data\0\0_120.bmp, 1862 , 2006-10-13
数字识别\data\0\0_121.bmp, 1862 , 2006-10-13
数字识别\data\0\0_122.bmp, 1862 , 2006-10-13
数字识别\data\0\0_123.bmp, 1862 , 2006-10-13
数字识别\data\0\0_124.bmp, 1862 , 2006-10-13
数字识别\data\0\0_125.bmp, 1862 , 2006-10-13
数字识别\data\0\0_126.bmp, 1862 , 2006-10-13
数字识别\data\0\0_127.bmp, 1862 , 2006-10-13
数字识别\data\0\0_128.bmp, 1862 , 2006-10-13
数字识别\data\0\0_129.bmp, 1862 , 2006-10-13
数字识别\data\0\0_13.bmp, 1862 , 2006-10-13
数字识别\data\0\0_130.bmp, 1862 , 2006-10-13
数字识别\data\0\0_131.bmp, 1862 , 2006-10-13
数字识别\data\0\0_132.bmp, 1862 , 2006-10-13
数字识别\data\0\0_133.bmp, 1862 , 2006-10-13
数字识别\data\0\0_134.bmp, 1862 , 2006-10-13
数字识别\data\0\0_135.bmp, 1862 , 2006-10-13
数字识别\data\0\0_136.bmp, 1862 , 2006-10-13
数字识别\data\0\0_137.bmp, 1862 , 2006-10-13
数字识别\data\0\0_138.bmp, 1862 , 2006-10-13
数字识别\data\0\0_139.bmp, 1862 , 2006-10-13
数字识别\data\0\0_14.bmp, 1862 , 2006-10-13
数字识别\data\0\0_140.bmp, 1862 , 2006-10-13
数字识别\data\0\0_141.bmp, 1862 , 2006-10-13
数字识别\data\0\0_142.bmp, 1862 , 2006-10-13
数字识别\data\0\0_143.bmp, 1862 , 2006-10-13
数字识别\data\0\0_144.bmp, 1862 , 2006-10-13
数字识别\data\0\0_145.bmp, 1862 , 2006-10-13
数字识别\data\0\0_146.bmp, 1862 , 2006-10-13
数字识别\data\0\0_147.bmp, 1862 , 2006-10-13
数字识别\data\0\0_148.bmp, 1862 , 2006-10-13
数字识别\data\0\0_149.bmp, 1862 , 2006-10-13
数字识别\data\0\0_15.bmp, 1862 , 2006-10-13
数字识别\data\0\0_150.bmp, 1862 , 2006-10-13
数字识别\data\0\0_151.bmp, 1862 , 2006-10-13
数字识别\data\0\0_152.bmp, 1862 , 2006-10-13
数字识别\data\0\0_153.bmp, 1862 , 2006-10-13
数字识别\data\0\0_154.bmp, 1862 , 2006-10-13
数字识别\data\0\0_155.bmp, 1862 , 2006-10-13
数字识别\data\0\0_156.bmp, 1862 , 2006-10-13
数字识别\data\0\0_157.bmp, 1862 , 2006-10-13
数字识别\data\0\0_158.bmp, 1862 , 2006-10-13
数字识别\data\0\0_159.bmp, 1862 , 2006-10-13
数字识别\data\0\0_16.bmp, 1862 , 2006-10-13
数字识别\data\0\0_160.bmp, 1862 , 2006-10-13
数字识别\data\0\0_161.bmp, 1862 , 2006-10-13
数字识别\data\0\0_162.bmp, 1862 , 2006-10-13
数字识别\data\0\0_163.bmp, 1862 , 2006-10-13
数字识别\data\0\0_164.bmp, 1862 , 2006-10-13
数字识别\data\0\0_165.bmp, 1862 , 2006-10-13
数字识别\data\0\0_166.bmp, 1862 , 2006-10-13
数字识别\data\0\0_167.bmp, 1862 , 2006-10-13
数字识别\data\0\0_168.bmp, 1862 , 2006-10-13
数字识别\data\0\0_169.bmp, 1862 , 2006-10-13
数字识别\data\0\0_17.bmp, 1862 , 2006-10-13
数字识别\data\0\0_170.bmp, 1862 , 2006-10-13
数字识别\data\0\0_171.bmp, 1862 , 2006-10-13
数字识别\data\0\0_172.bmp, 1862 , 2006-10-13
数字识别\data\0\0_173.bmp, 1862 , 2006-10-13
数字识别\data\0\0_174.bmp, 1862 , 2006-10-13
数字识别\data\0\0_175.bmp, 1862 , 2006-10-13
数字识别\data\0\0_176.bmp, 1862 , 2006-10-13
数字识别\data\0\0_177.bmp, 1862 , 2006-10-13
数字识别\data\0\0_178.bmp, 1862 , 2006-10-13
数字识别\data\0\0_179.bmp, 1862 , 2006-10-13
数字识别\data\0\0_18.bmp, 1862 , 2006-10-13
数字识别\data\0\0_180.bmp, 1862 , 2006-10-13
数字识别\data\0\0_181.bmp, 1862 , 2006-10-13
数字识别\data\0\0_182.bmp, 1862 , 2006-10-13
数字识别\data\0\0_183.bmp, 1862 , 2006-10-13
数字识别\data\0\0_184.bmp, 1862 , 2006-10-13
数字识别\data\0\0_185.bmp, 1862 , 2006-10-13
数字识别\data\0\0_186.bmp, 1862 , 2006-10-13

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • remove
    Artifact removal by cross correlation
    2010-08-27 17:26:55下载
    积分:1
  • JadeR
    this code is for REAL-valued signals. An implementation of JADE for both real and complex signals is also available from http://perso.telecom-paristech.fr/~cardoso/guidesepsou.html
    2014-10-11 16:46:36下载
    积分:1
  • KM_5_5
    图论中KM算法的源程序,仿真了5个用户5个信道的频谱分配问题(KM algorithm in graph theory of the source, simulation 5 of 5 users of spectrum allocation channel)
    2020-09-09 11:58:02下载
    积分:1
  • Desktop
    rfid室内定位相关。可以对误差分布进行仿真研究。生成分布图(rfid)
    2010-12-27 16:54:47下载
    积分:1
  • dual_bridge_converter
    simulink model of dual bridge ac to dc converter. the important thing it is in open loop. it is for study purpose..
    2011-09-22 21:58:00下载
    积分:1
  • Rec
    Recogition faces programme with eucleadean distance
    2010-01-26 22:30:57下载
    积分:1
  • Matlab-Xfoil
    使用Matlab语言生成Xfoil的计算文件,并调用Xfoil快速计算翼型的气动力(Using Matlab language generation Xfoil calculation file and call Xfoil quick calculation of aerodynamic airfoil)
    2020-10-26 16:19:59下载
    积分:1
  • SVMNR
    支持向量机和BP神经网络虽然都可以用来做非线性回归,但它们所基于的理论基础不同,回归的机理也不相同。支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。为了验证这种观点,本文编写了支持向量机非线性回归的通用Matlab程序和基于神经网络工具箱的BP神经网络仿真模块,仿真结果证实,支持向量机做非线性回归不仅泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。 (Support Vector Machine and BP neural network, even though there can be used to make non-linear regression, but they are based on the theoretical basis for the different, the mechanism of regression is not the same. Support vector machine based on structural risk minimization theory, generally considered the generalization ability of neural networks than the strong. To test this view, the paper prepared by non-linear regression support vector machine procedures and based on a common Matlab neural network toolbox of BP neural network )
    2021-03-03 21:59:32下载
    积分:1
  • Matlab
    Matlab 程序语言,有jacobi GS迭代,弦截法等。(Matlab programming language, there jacobi GS iteration, Secant method.)
    2010-12-13 23:56:04下载
    积分:1
  • rpca
    rcpa算法matlab程序 有意者下吧(rcpa algorithm Matlab procedures Interested parties are you)
    2006-11-15 15:14:01下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载