登录
首页 » matlab » 无人驾驶车辆模型预测控制matlab代码

无人驾驶车辆模型预测控制matlab代码

于 2019-06-04 发布
0 216
下载积分: 1 下载次数: 63

代码说明:

说明:  《无人驾驶车辆模型预测控制》对应代码,添加注释,成功运行!实现了车辆无人驾驶控制的matlab仿真(The corresponding code of "prediction and control of unmanned vehicle model" is added with notes and successfully run! Matlab simulation of vehicle unmanned driving control is realized)

文件列表:

Matlab代码, 0 , 2018-07-09
Matlab代码\.git, 0 , 2018-07-09
Matlab代码\.git\COMMIT_EDITMSG, 31 , 2018-06-03
Matlab代码\.git\FETCH_HEAD, 0 , 2018-05-13
Matlab代码\.git\HEAD, 23 , 2018-05-13
Matlab代码\.git\config, 360 , 2018-06-03
Matlab代码\.git\description, 73 , 2018-05-13
Matlab代码\.git\hooks, 0 , 2018-07-09
Matlab代码\.git\hooks\applypatch-msg.sample, 478 , 2018-05-13
Matlab代码\.git\hooks\commit-msg.sample, 896 , 2018-05-13
Matlab代码\.git\hooks\fsmonitor-watchman.sample, 3327 , 2018-05-13
Matlab代码\.git\hooks\post-update.sample, 189 , 2018-05-13
Matlab代码\.git\hooks\pre-applypatch.sample, 424 , 2018-05-13
Matlab代码\.git\hooks\pre-commit.sample, 1642 , 2018-05-13
Matlab代码\.git\hooks\pre-push.sample, 1348 , 2018-05-13
Matlab代码\.git\hooks\pre-rebase.sample, 4898 , 2018-05-13
Matlab代码\.git\hooks\pre-receive.sample, 544 , 2018-05-13
Matlab代码\.git\hooks\prepare-commit-msg.sample, 1492 , 2018-05-13
Matlab代码\.git\hooks\update.sample, 3610 , 2018-05-13
Matlab代码\.git\index, 4991 , 2018-06-03
Matlab代码\.git\info, 0 , 2018-07-09
Matlab代码\.git\info\exclude, 240 , 2018-05-13
Matlab代码\.git\logs, 0 , 2018-07-09
Matlab代码\.git\logs\HEAD, 565 , 2018-06-03
Matlab代码\.git\logs\refs, 0 , 2018-07-09
Matlab代码\.git\logs\refs\heads, 0 , 2018-07-09
Matlab代码\.git\logs\refs\heads\master, 565 , 2018-06-03
Matlab代码\.git\logs\refs\remotes, 0 , 2018-07-09
Matlab代码\.git\logs\refs\remotes\origin, 0 , 2018-07-09
Matlab代码\.git\logs\refs\remotes\origin\master, 328 , 2018-05-14
Matlab代码\.git\objects, 0 , 2018-07-09
Matlab代码\.git\objects\01, 0 , 2018-07-09
Matlab代码\.git\objects\01\65ca83a97f56c4a50bfae74e6e7148fefbb9f1, 1998 , 2018-06-03
Matlab代码\.git\objects\05, 0 , 2018-07-09
Matlab代码\.git\objects\05\451be7c183114c70f97583b337fca39308cddb, 2475 , 2018-05-13
Matlab代码\.git\objects\05\83ddebd6f83515a0fae639412381880d720b49, 582 , 2018-05-13
Matlab代码\.git\objects\06, 0 , 2018-07-09
Matlab代码\.git\objects\06\ba49d016dc7ff0669ee8e888ad687e3d73bd20, 114 , 2018-05-13
Matlab代码\.git\objects\07, 0 , 2018-07-09
Matlab代码\.git\objects\07\49e113399f5cb23bfc39fe4b478e8e363ff87b, 799 , 2018-05-13
Matlab代码\.git\objects\14, 0 , 2018-07-09
Matlab代码\.git\objects\14\d918233387b8e876c8abbc2e03a8c779cae5de, 3493 , 2018-05-14
Matlab代码\.git\objects\16, 0 , 2018-07-09
Matlab代码\.git\objects\16\23537d791ec993523bc1346ee6c779e6c2cacc, 818 , 2018-05-13
Matlab代码\.git\objects\1a, 0 , 2018-07-09
Matlab代码\.git\objects\1a\e8a1d2d6d3f797f1f9f99cbc2d4f9a013a9b2f, 843 , 2018-05-13
Matlab代码\.git\objects\1d, 0 , 2018-07-09
Matlab代码\.git\objects\1d\37a9e46e780a3dfc2f7de81b64e8d29d83b05d, 2261 , 2018-05-13
Matlab代码\.git\objects\30, 0 , 2018-07-09
Matlab代码\.git\objects\30\13c4890aab3e3fb82e9046919e2ef681075dc5, 106 , 2018-05-14
Matlab代码\.git\objects\39, 0 , 2018-07-09
Matlab代码\.git\objects\39\4debf59221129f03648297a0386a10d1d6d85b, 4716 , 2018-05-13
Matlab代码\.git\objects\3f, 0 , 2018-07-09
Matlab代码\.git\objects\3f\f636bdbef4edc7fca1eac1ee15bc5930f1125d, 22443 , 2018-05-13
Matlab代码\.git\objects\41, 0 , 2018-07-09
Matlab代码\.git\objects\41\dee9e55f7824d9220e651491e8038dca6f150a, 187 , 2018-06-03
Matlab代码\.git\objects\42, 0 , 2018-07-09
Matlab代码\.git\objects\42\f63b0b8b2454b4a86ca39919d5732a3109508f, 395 , 2018-05-13
Matlab代码\.git\objects\44, 0 , 2018-07-09
Matlab代码\.git\objects\44\8bfdfc613318a5789444a01ebefe132a4d0888, 810 , 2018-05-13
Matlab代码\.git\objects\4b, 0 , 2018-07-09
Matlab代码\.git\objects\4b\ac178082b6cae64010ee623556e64cd81be4a2, 2282 , 2018-05-13
Matlab代码\.git\objects\4f, 0 , 2018-07-09
Matlab代码\.git\objects\4f\9aacd01d09dcf9311fc1d5941139d4dafdadd5, 666 , 2018-05-13
Matlab代码\.git\objects\50, 0 , 2018-07-09
Matlab代码\.git\objects\50\da2e6489c289a972388bebadc26989596563d2, 870 , 2018-05-13
Matlab代码\.git\objects\54, 0 , 2018-07-09
Matlab代码\.git\objects\54\223ab9b1ca13c82b47498c6a8aa732648bc8cb, 644 , 2018-06-03
Matlab代码\.git\objects\58, 0 , 2018-07-09
Matlab代码\.git\objects\58\2c3e61874b6fd6f52152751a304d08fbc61ef1, 622 , 2018-05-13
Matlab代码\.git\objects\59, 0 , 2018-07-09
Matlab代码\.git\objects\59\91894d042bf5cfbb36d4366fd902599aaac592, 1393 , 2018-05-13
Matlab代码\.git\objects\5c, 0 , 2018-07-09
Matlab代码\.git\objects\5c\44acfa974e2e805045c0cbedf898b8ea76af30, 25304 , 2018-05-13
Matlab代码\.git\objects\65, 0 , 2018-07-09
Matlab代码\.git\objects\65\27f4ef19a7f99bd0c53ebff04783a160cf2537, 55 , 2018-05-13
Matlab代码\.git\objects\65\d37153b4a93b312fb89e34cb2f565bb4e74945, 1983 , 2018-05-13
Matlab代码\.git\objects\69, 0 , 2018-07-09
Matlab代码\.git\objects\69\1b147e7bcf0bb483124455bcac7bc482dfbfad, 2044 , 2018-05-13
Matlab代码\.git\objects\6a, 0 , 2018-07-09
Matlab代码\.git\objects\6a\6df7abf0144c842238c2bf9f23973242436e23, 165 , 2018-05-13
Matlab代码\.git\objects\6d, 0 , 2018-07-09
Matlab代码\.git\objects\6d\dc6bbdc0e5655dd5168a5ab24f5331ce5f14df, 4773 , 2018-05-13
Matlab代码\.git\objects\71, 0 , 2018-07-09
Matlab代码\.git\objects\71\af24bfc688cf139f5e7f2f1b60905fbba2bd9d, 22198 , 2018-05-13
Matlab代码\.git\objects\78, 0 , 2018-07-09
Matlab代码\.git\objects\78\2037e185860d0c6b3f46d013fa977ea75cc9be, 6533 , 2018-05-13
Matlab代码\.git\objects\7f, 0 , 2018-07-09
Matlab代码\.git\objects\7f\12e52db4dfdee6cd5c3b3861acfe9e34ff2f17, 506 , 2018-05-13
Matlab代码\.git\objects\81, 0 , 2018-07-09
Matlab代码\.git\objects\81\b50d1c68fb4607fc8e19452ff18390cfd5cbaa, 19224 , 2018-05-13
Matlab代码\.git\objects\81\c92fa77ea7c11c7af6c831d813c09feabe1995, 4774 , 2018-05-13
Matlab代码\.git\objects\83, 0 , 2018-07-09
Matlab代码\.git\objects\83\71df1f485b759978b15339c908d2142950f63b, 54 , 2018-05-13
Matlab代码\.git\objects\84, 0 , 2018-07-09
Matlab代码\.git\objects\84\e8f2256767d8b9291a513a1d4a23d613fadf34, 79 , 2018-05-13
Matlab代码\.git\objects\88, 0 , 2018-07-09
Matlab代码\.git\objects\88\81477f3190d6dc0d0475b121dfe4350f13238a, 195 , 2018-06-03
Matlab代码\.git\objects\8c, 0 , 2018-07-09
Matlab代码\.git\objects\8c\fdf131ae96d4d718f91d52a35e711c6a6df4e9, 861 , 2018-05-13

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 一个3D火焰粒子效果,使用JSR184,效果很逼真
    一个3D火焰粒子效果,使用JSR184,效果很逼真-Flame of a 3D particle effects, the use of JSR184, the effect is very realistic
    2022-02-03 22:56:15下载
    积分:1
  • allegro中文训练教程,做pcb开发者必需要有的,欢迎大家下载
    allegro中文训练教程,做pcb开发者必需要有的,欢迎大家下载-Chinese language training tutorial allegro, pcb development gets the need to do Yes, welcome to download
    2023-07-08 00:55:03下载
    积分:1
  • ATS282X-0813
    ats282x bluetooth dual mode
    2020-06-19 23:00:02下载
    积分:1
  • Fractional-Fourier-Transform
    本书运用现代信号处理的理论,系统地介绍了分数阶Fourier变换的定义与特性,分数阶Fourier分析的基本原理与方法及其典型的应用。内容包括:分数阶Fourier变换的起源与发展、定义与基本特性;分数阶Fourier变换与其他时频分析工具的关系;分数阶Fourier变换的快速算法;分数阶Fourier变换在信号的检测与参数估计、雷达信号处理、时频域滤波以及通信信号处理中的应用。(The book is the use of modern signal processing theory, the system introduces the definition and characteristics of the fractional Fourier transform, fractional Fourier analysis of the basic principles and methods of its typical applications. Include: the origin and development of the fractional Fourier transform, the definition and basic characteristics fractional Fourier transform relationship with other time-frequency analysis tool fractional Fourier transform algorithm fractional Fourier transform in signal detection and parameter estimation The radar signal processing, time and frequency domain filtering and communication signal processing applications.)
    2013-02-28 18:55:19下载
    积分:1
  • 此程序为潮流计算的PQ分解程序,也是潮流程序中一部分。
    此程序为潮流计算的PQ分解程序,也是潮流程序中一部分。-This program for the power flow calculation of the PQ decomposition process, is also a part of the trend of the program.
    2023-03-03 00:45:03下载
    积分:1
  • UX的常用命令以及系统管理技巧.是迅速提高操作熟练度的好帮手....
    HP-UX的常用命令以及系统管理技巧.是迅速提高操作熟练度的好帮手.-HP-UX commands and system management skills. Yes rapidly enhance operational proficiency good helper.
    2022-11-18 17:55:03下载
    积分:1
  • Tsai and zhangzhengyou
    可实现Tsai两步法及张正友算法的相机单目标定,内有说明文档,最后得到内外方位元素(Single camera calibration of a Tsai two step camera and zhang zheng you algorithm)
    2018-01-15 09:02:58下载
    积分:1
  • 容积卡尔曼ckf
    说明:  超宽带室内定位采用容积卡尔曼滤波算法,对初步了解超宽带定位的学生有很大帮助(UWB indoor positioning, using volume Kalman filter algorithm, is very helpful for students who have a preliminary understanding of UWB positioning)
    2021-04-27 17:58:44下载
    积分:1
  • CVA程序
    利用规范变量分析的方法,对数据进行诊断分析(use cva to realize online monitoring)
    2021-04-26 15:48:45下载
    积分:1
  • 点击标签添加到面板代码
    点击标签添加到面板代码是一款点击按钮将选中标签添加到面板上(Click on the label to add to the panel code is a click button to add the selected label to the panel)
    2019-04-08 16:43:24下载
    积分:1
  • 696518资源总数
  • 106245会员总数
  • 18今日下载