登录
首页 » matlab » RF_MexStandalone-v0.02-precompiled

RF_MexStandalone-v0.02-precompiled

于 2019-06-05 发布
0 139
下载积分: 1 下载次数: 4

代码说明:

说明:  运用随机森林方法对数据进行建模,可以用模型进行预测与分类(Random forest prediction and classification)

文件列表:

RF_MexStandalone-v0.02-precompiled\randomforest-matlab\rf.m, 1165 , 2018-04-09
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_windows.m, 1718 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20992 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64, 26624 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64, 46080 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\README.txt, 3255 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Version_History.txt, 1470 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\compile_windows.m, 915 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 10752 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw64, 11264 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 25600 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\mexRF_train.mexw64, 34304 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\README.txt, 2750 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2009-04-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2009-05-17
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9515 , 2018-04-09
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\Version_History.txt, 384 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\README_Windows_binary.txt, 1200 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\data, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\src, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2010-02-06
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Reg_C, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled\randomforest-matlab, 0 , 2018-06-25
RF_MexStandalone-v0.02-precompiled, 0 , 2018-06-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GraidFeature
    基于matlab的纹理特征提取 基于灰度共生矩阵的纹理特征(Texture feature extraction based on matlab GLCM-based texture features)
    2010-05-16 18:31:10下载
    积分:1
  • position-based-visual-servo
    英文资料。基于位置的机器人视觉伺服综述。可参考。/ (English. Based on the location of Servo Robot Vision Summary. Reference. /)
    2007-02-01 10:28:23下载
    积分:1
  • FDTD3D_Main[1]
    使用有限时域差分法,用matlab模拟三维光子晶体(the simulation of TM mode in three-dimensional photonic crystals)
    2014-10-31 13:14:23下载
    积分:1
  • StackedBar
    To show stacked bar in matlab programe
    2015-03-15 21:26:42下载
    积分:1
  • matlab-aspss-cluster-analysis.
    用matlab&spss实现聚类分析,源自《计量地理学》(徐建华,华东师范大学)。(Achieve with matlab & spss cluster analysis.)
    2013-08-10 16:26:05下载
    积分:1
  • pll_matlab[1]
    MATLAB仿真二阶锁相环PLL,希望对大家有用(Second-order phase-locked loop)
    2013-11-16 10:52:12下载
    积分:1
  • Traveling-salesman
    旅行商问题:全国省会二维坐标如图30所示,基于遗传算法设计从黑龙江到西藏,并遍历全国各省会(每个省会只经过一次)的最短路径(Traveling salesman problem: two-dimensional coordinates of the national capital as shown in Figure 30, based on genetic algorithm design from Heilongjiang to Tibet and traverse the provinces (each provincial capital only after a) the shortest path)
    2013-11-21 09:02:22下载
    积分:1
  • Pf9800
    说明:  PF9810功率仪 电压测量、电流测量、频率测试(PF9810 power meter voltage measurement, current measurement, frequency measurement)
    2011-03-29 18:19:57下载
    积分:1
  • linecoords
    Edge detection result should be enhanced using linear method like Median filter to remove the garbage around the pupil to gain clear pupil to determine perfect centre. Get the centre of the pupil by counting the number of black pixels (zero value) of each column and row. Then get each row and column that has the maximum number of these black pixels. Then determine the center by simple calculation according to the image coordinate to set it correct on the image, consequently we can determine the radius of the pupil. Thus we can find the pupillary boundary (inner). A similar procedure is extended by using a coarse scale to locate the outer boundary (limbus) which can be apparent by using the mid-point algorithms of circle and ellipse.
    2011-11-18 02:06:20下载
    积分:1
  • CHW4
    Linear Perceptron Classifier and Least Square Classifier Algorithms
    2014-12-23 01:55:10下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载