登录
首页 » matlab » FCM,GK,GG模糊聚类算法

FCM,GK,GG模糊聚类算法

于 2021-04-21 发布
0 326
下载积分: 1 下载次数: 15

代码说明:

说明:  fcm实现简单的数值分类,只要你重新定义数据矩阵,就可以直接进行分类。(FCM implements simple numerical classification, which can be directly classified as long as you redefine the data matrix.)

文件列表:

FCM,GK,GG模糊聚类算法, 0 , 2019-06-10
FCM,GK,GG模糊聚类算法\Demos, 0 , 2019-06-10
FCM,GK,GG模糊聚类算法\Demos\clusteringexamples, 0 , 2019-06-10
FCM,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle, 0 , 2019-06-10
FCM,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\FCMcall.m, 542 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\GGcall.m, 589 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\GKcall.m, 543 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\Kmeanscall.m, 408 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\Kmedoidcall.m, 409 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\motorcycle\MotorCycle.txt, 8086 , 2003-04-25
FCM,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\FCMcall.m, 499 , 2004-05-19
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\GGcall.m, 598 , 2004-05-19
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\GKcall.m, 498 , 2004-05-19
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\Kmeanscall.m, 536 , 2004-05-17
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\Kmedoidcall.m, 508 , 2004-05-17
FCM
,GK,GG模糊聚类算法\Demos\clusteringexamples\synthetic\nDexample.m, 381 , 2004-03-14
FCM,GK,GG模糊聚类算法\Demos\clustevalexample, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\clustevalexample\data2.txt, 2952 , 2004-02-09
FCM
,GK,GG模糊聚类算法\Demos\clustevalexample\evalexample.m, 539 , 2005-03-22
FCM,GK,GG模糊聚类算法\Demos\comparing, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\comparing\FCMcall.m, 637 , 2004-05-19
FCM
,GK,GG模糊聚类算法\Demos\comparing\GGcall.m, 716 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\comparing\GKcall.m, 676 , 2004-05-19
FCM
,GK,GG模糊聚类算法\Demos\comparing\Kmeanscall.m, 421 , 2004-05-13
FCM
,GK,GG模糊聚类算法\Demos\comparing\Kmedoidcall.m, 422 , 2004-05-13
FCM
,GK,GG模糊聚类算法\Demos\comparing\modvalidity.m, 3510 , 2004-05-13
FCM
,GK,GG模糊聚类算法\Demos\comparing\nDexample.m, 336 , 2004-05-13
FCM,GK,GG模糊聚类算法\Demos\normexample, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\normexample\data3.txt, 5705 , 2004-02-09
FCM
,GK,GG模糊聚类算法\Demos\normexample\normexample.m, 373 , 2004-05-17
FCM,GK,GG模糊聚类算法\Demos\optnumber, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\optnumber\modvalidity.m, 3510 , 2004-05-13
FCM
,GK,GG模糊聚类算法\Demos\optnumber\MotorCycle.txt, 8086 , 2003-04-25
FCM
,GK,GG模糊聚类算法\Demos\optnumber\optnumber.m, 1608 , 2005-03-22
FCM,GK,GG模糊聚类算法\Demos\PCAexample, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\PCAexample\nDexample.m, 379 , 2004-05-10
FCM
,GK,GG模糊聚类算法\Demos\PCAexample\PCAexample.m, 483 , 2005-03-22
FCM,GK,GG模糊聚类算法\Demos\projection, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\Demos\projection\IRIS.MAT, 8584 , 2004-04-05
FCM
,GK,GG模糊聚类算法\Demos\projection\visual_call.m, 4117 , 2005-03-22
FCM
,GK,GG模糊聚类算法\Demos\projection\WINEDAT.TXT, 40081 , 2004-04-05
FCM
,GK,GG模糊聚类算法\Demos\projection\wisconsin.wk1, 88942 , 2004-04-05
FCM,GK,GG模糊聚类算法\FUZZCLUST, 0 , 2019-06-10
FCM
,GK,GG模糊聚类算法\FUZZCLUST\clusteval.m, 3178 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\clust_denormalize.m, 710 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\clust_normalize.m, 705 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\FCMclust.m, 1483 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\FuzSam.m, 2441 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\GGclust.asv, 2562 , 2019-06-10
FCM
,GK,GG模糊聚类算法\FUZZCLUST\GGclust.m, 2553 , 2019-06-10
FCM
,GK,GG模糊聚类算法\FUZZCLUST\GKclust.m, 3112 , 2005-03-30
FCM
,GK,GG模糊聚类算法\FUZZCLUST\Kmeans.m, 1957 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\Kmedoid.m, 2308 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\nDexample.m, 379 , 2004-05-06
FCM
,GK,GG模糊聚类算法\FUZZCLUST\PCA.m, 1353 , 2004-05-10
FCM
,GK,GG模糊聚类算法\FUZZCLUST\PROJEVAL.M, 1174 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\SAMMON.M, 4509 , 2005-03-22
FCM
,GK,GG模糊聚类算法\FUZZCLUST\SAMSTR.M, 610 , 2004-05-10
FCM
,GK,GG模糊聚类算法\FUZZCLUST\validity.m, 4101 , 2004-05-13
FCM
,GK,GG模糊聚类算法\FuzzyClusteringToolbox.pdf, 2137376 , 2005-03-22

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • principalComponentAnalysis
    a matlab code that can be used for calculating the PCA of any kind of data , using simulink
    2009-05-19 04:07:35下载
    积分:1
  • QPSK_fre_DFE_equa
    频域反馈均衡器仿真设计,采用FFT快速变换,抗通信中的多径干扰(frequency decision feedback equaliter,use FFT,in order to estimate the ISI in communication)
    2013-11-12 09:21:07下载
    积分:1
  • Metropolis-Hasting Random Walk
    Metropolis Hastings code
    2020-12-03 18:19:24下载
    积分:1
  • forecast
    利用matlab软件建立模型,利用ARMA模型对数据进行预测(Using matlab software to model the data using the ARMA model prediction)
    2013-08-09 17:36:49下载
    积分:1
  • MultiscaleStereoFeaturesMatching
    一个matlab实现的立体匹配算法,程序中算法采用的是金字塔算法,具有计算速度快的特点(Matlab achieve a stereo matching algorithm, which is used to process the pyramid algorithm, Calculation speed is of the characteristics)
    2007-06-06 17:14:41下载
    积分:1
  • yzc1
    SVPWM Control AC motors
    2011-11-01 21:35:17下载
    积分:1
  • Google_Code_SISO
    In parallel, the success of turbo codes has inspired new potentially ... Interference Cancellation (MMSE-IC) joint decoding receivers or turbo ... equalizer .... are stored on a hard drive and then processed using Matlab.
    2013-12-11 02:29:41下载
    积分:1
  • sons
    Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
    2020-12-03 13:19:24下载
    积分:1
  • rtw3
    基于simulink/RTW的微位移实验平台的研制(Based on simulink/RTW of micro-displacement experimental platform)
    2007-09-01 15:33:33下载
    积分:1
  • PSO
    matlab的PSO法实验报告完整版matlab experiments to catch up with the full version of the report(matlab experiments to catch up with the full version of the report)
    2009-05-03 23:23:39下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载