登录
首页 » Python » DensePose-master

DensePose-master

于 2019-06-17 发布
0 176
下载积分: 1 下载次数: 4

代码说明:

说明:  DensePose用深度学习把2D图像坐标映射到3D人体表面上,再加上以每秒多帧的速度处理密集坐标,最后实现动态人物的精确定位和姿态估计。该技术集目标检测、姿态估计、目标部分/实例分割等多种计算机视觉任务于一身的一个综合问题。(DensePost maps 2D image coordinates to 3D human body surface by in-depth learning, and processes dense coordinates at the speed of multiple frames per second. Finally, it realizes precise positioning and attitude estimation of dynamic characters. This technology integrates many kinds of computer vision tasks, such as target detection, attitude estimation, target part/instance segmentation, etc.)

文件列表:

DensePose-master, 0 , 2018-08-28
DensePose-master\.gitignore, 495 , 2018-08-28
DensePose-master\CMakeLists.txt, 2012 , 2018-08-28
DensePose-master\CODE_OF_CONDUCT.md, 286 , 2018-08-28
DensePose-master\CONTRIBUTING.md, 1250 , 2018-08-28
DensePose-master\DensePoseData, 0 , 2018-08-28
DensePose-master\DensePoseData\demo_data, 0 , 2018-08-28
DensePose-master\DensePoseData\demo_data\demo_dp_single_ann.pkl, 980845 , 2018-08-28
DensePose-master\DensePoseData\demo_data\demo_im.jpg, 149246 , 2018-08-28
DensePose-master\DensePoseData\demo_data\synth_UV_example.png, 25997 , 2018-08-28
DensePose-master\DensePoseData\demo_data\texture_atlas_200.png, 1237384 , 2018-08-28
DensePose-master\DensePoseData\demo_data\texture_from_SURREAL.png, 831242 , 2018-08-28
DensePose-master\DensePoseData\get_DensePose_COCO.sh, 346 , 2018-08-28
DensePose-master\DensePoseData\get_densepose_uv.sh, 163 , 2018-08-28
DensePose-master\DensePoseData\get_eval_data.sh, 173 , 2018-08-28
DensePose-master\DensePoseData\infer_out, 0 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im.jpg.pdf, 1056420 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im_INDS.png, 8801 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im_IUV.png, 77229 , 2018-08-28
DensePose-master\GETTING_STARTED.md, 2815 , 2018-08-28
DensePose-master\INSTALL.md, 6712 , 2018-08-28
DensePose-master\LICENSE, 19333 , 2018-08-28
DensePose-master\MODEL_ZOO.md, 3109 , 2018-08-28
DensePose-master\Makefile, 491 , 2018-08-28
DensePose-master\NOTICE, 1344 , 2018-08-28
DensePose-master\PoseTrack, 0 , 2018-08-28
DensePose-master\PoseTrack\DensePose-PoseTrack-Visualize.ipynb, 792870 , 2018-08-28
DensePose-master\PoseTrack\README.md, 3352 , 2018-08-28
DensePose-master\PoseTrack\configs, 0 , 2018-08-28
DensePose-master\PoseTrack\configs\DensePose_ResNet50_FPN_s1x-e2e.yaml, 1976 , 2018-08-28
DensePose-master\PoseTrack\get_DensePose_PoseTrack.sh, 696 , 2018-08-28
DensePose-master\README.md, 3216 , 2018-08-28
DensePose-master\challenge, 0 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose, 0 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\data_format.md, 3303 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\evaluation.md, 4694 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\example_results.json, 181922 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\readme.md, 3797 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\results_format.md, 2153 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\upload.md, 3823 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose, 0 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\data_format.md, 4449 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\evaluation.md, 4641 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\readme.md, 3594 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\results_format.md, 2157 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\upload.md, 3873 , 2018-08-28
DensePose-master\challenge\encode_results_for_competition.py, 3508 , 2018-08-28
DensePose-master\cmake, 0 , 2018-08-28
DensePose-master\cmake\Summary.cmake, 1020 , 2018-08-28
DensePose-master\cmake\legacy, 0 , 2018-08-28
DensePose-master\cmake\legacy\Cuda.cmake, 9531 , 2018-08-28
DensePose-master\cmake\legacy\Dependencies.cmake, 1341 , 2018-08-28
DensePose-master\cmake\legacy\Modules, 0 , 2018-08-28
DensePose-master\cmake\legacy\Modules\FindCuDNN.cmake, 2100 , 2018-08-28
DensePose-master\cmake\legacy\Summary.cmake, 940 , 2018-08-28
DensePose-master\cmake\legacy\Utils.cmake, 10724 , 2018-08-28
DensePose-master\cmake\legacy\legacymake.cmake, 1621 , 2018-08-28
DensePose-master\configs, 0 , 2018-08-28
DensePose-master\configs\DensePoseKeyPointsMask_ResNet50_FPN_s1x-e2e.yaml, 2681 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN.yaml, 1975 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_32x8d_s1x-e2e.yaml, 2151 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_32x8d_s1x.yaml, 2155 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_s1x-e2e.yaml, 1977 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_s1x.yaml, 2117 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN.yaml, 1974 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_s1x-e2e.yaml, 1975 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_s1x.yaml, 2115 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_single_GPU.yaml, 2109 , 2018-08-28
DensePose-master\configs\rpn_densepose_only_R-50-FPN_1x.yaml, 1075 , 2018-08-28
DensePose-master\configs\rpn_densepose_only_X-101-32x8d-FPN_1x.yaml, 1263 , 2018-08-28
DensePose-master\detectron, 0 , 2018-08-28
DensePose-master\detectron\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\core, 0 , 2018-08-28
DensePose-master\detectron\core\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\core\config.py, 47570 , 2018-08-28
DensePose-master\detectron\core\rpn_generator.py, 9280 , 2018-08-28
DensePose-master\detectron\core\test.py, 37386 , 2018-08-28
DensePose-master\detectron\core\test_engine.py, 15303 , 2018-08-28
DensePose-master\detectron\core\test_retinanet.py, 7104 , 2018-08-28
DensePose-master\detectron\datasets, 0 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper, 0 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-08-28
DensePose-master\detectron\datasets\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\datasets\cityscapes_json_dataset_evaluator.py, 2960 , 2018-08-28
DensePose-master\detectron\datasets\coco_to_cityscapes_id.py, 2495 , 2018-08-28
DensePose-master\detectron\datasets\data, 0 , 2018-08-28
DensePose-master\detectron\datasets\data\README.md, 3187 , 2018-08-28
DensePose-master\detectron\datasets\dataset_catalog.py, 8164 , 2018-08-28
DensePose-master\detectron\datasets\densepose_cocoeval.py, 39088 , 2018-08-28
DensePose-master\detectron\datasets\dummy_datasets.py, 1899 , 2018-08-28
DensePose-master\detectron\datasets\json_dataset.py, 20722 , 2018-08-28
DensePose-master\detectron\datasets\json_dataset_evaluator.py, 19172 , 2018-08-28
DensePose-master\detectron\datasets\roidb.py, 7497 , 2018-08-28
DensePose-master\detectron\datasets\task_evaluation.py, 14367 , 2018-08-28
DensePose-master\detectron\datasets\voc_dataset_evaluator.py, 6719 , 2018-08-28
DensePose-master\detectron\datasets\voc_eval.py, 7386 , 2018-08-28
DensePose-master\detectron\modeling, 0 , 2018-08-28
DensePose-master\detectron\modeling\FPN.py, 20218 , 2018-08-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • KNN
    高光谱数据进行KNN分类,可以从原始数据如(indianpine)中选取部分样本(Hyperspectral data can be classified by KNN, and some samples can be selected from raw data such as (indianpine).)
    2020-12-13 23:59:15下载
    积分:1
  • RegionGrow921
    基于区域增长的图像分割算法,非常经典,用MATLAB编写,已测试可用,对新手有帮助(Based on region growing image segmentation algorithm, very classic, with MATLAB writing, have been tested is available on the novice help)
    2009-09-27 14:56:34下载
    积分:1
  • iwssim_iwpsnr
    说明:  图像质量评价中全参考方法IWSSIM的代码,是经典方法SSIM的升级(The code of IWSSIM, a full reference method in image quality evaluation, is an upgrade of SSIM, a classical method)
    2020-06-18 02:40:02下载
    积分:1
  • canny
    说明:  外国人写的CANNY边界检测算法,代码质量很高,对初学编程很有帮助。(Foreigners write CANNY edge detection algorithm, code quality is high, very helpful for beginners programming.)
    2010-03-31 08:55:04下载
    积分:1
  • VCPP-image-processing-chapter03
    VisualC++数字图像处理技术详解第2版光盘-第三章(VisualC++ digital image processing technology Detailed Version 2 CD- Chapter 3)
    2016-04-16 13:22:08下载
    积分:1
  • HIO + ER
    说明:  Fienup的混合输入输出算法,是一种迭代算法,用来求相位的算法HIO(Fienup's hybrid input and output algorithm is an iterative algorithm used to find the phase algorithm HIO)
    2018-08-03 20:04:21下载
    积分:1
  • lifangticaisekongzhi
    说明:  彩色立方体控制 彩色立方体 控制 彩色立方体 控制 彩色立方体(color cube control color cube c ontrol co lor cube with color cube control system color cube)
    2006-04-24 11:10:12下载
    积分:1
  • WPSNR
    计算信噪比的测试程序代码,利用对比敏感度函数(CSF)测量失真图像的空间频率。(Calculation of the test code SNR, the contrast sensitivity function (CSF) measurement of the spatial frequency of image distortion.)
    2017-09-04 11:12:15下载
    积分:1
  • xulietuxiangjianceyuchongjian
    针对目前工业制造领域面临的难题,提出利用非量测数字摄像机进行工业钣金件高精度三维重建与视觉检测.采用二维直接线性变换分解摄像机参数初值并结合光束法平差进行高精度标定 利用最小二乘模板匹配提取像面上的点、直线信息并进行混合光束法平差,从而进行钣金件的高精度三维重建及其尺寸制造误差的检测.所开发的视觉检测系统硬件成本低、自动化程度较高,实际数据的多次实验均取得了优于1/8 000的相对精度,说明所论述的方法为工业零件的自动化三维检测提供了一条可行途径.(View of the current challenges facing the field of industrial manufacturing, made use of non-metric digital camera precision sheet metal parts for industrial reconstruction and visual inspection. Using two-dimensional direct linear transformation and the decomposition of initial parameters of the camera bundle adjustment with high accuracy calibration extracted by the least square template matching, like the surface of point, line information and mixed bundle adjustment to the three-dimensional reconstruction of high-precision sheet metal parts and the size of the detection of manufacturing errors. visual inspection system developed by the hardware low cost, high degree of automation, the actual data, many experiments have achieved better than 1/8000 of the relative accuracy, that the methods discussed in the automation of industrial components to provide a feasible three-dimensional detection approach.)
    2010-12-02 11:56:32下载
    积分:1
  • matlab-sourcecode-for-
    本代码是做指纹识别是代码,平台是MATLAB,能够完成指纹识别、处理、匹配整个过程。(This code is to do fingerprint identification code, the platform is MATLAB, able to complete the fingerprint identification, processing, matching the whole process.)
    2016-04-29 12:11:41下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载