登录
首页 » Python » DensePose-master

DensePose-master

于 2019-06-17 发布
0 194
下载积分: 1 下载次数: 4

代码说明:

说明:  DensePose用深度学习把2D图像坐标映射到3D人体表面上,再加上以每秒多帧的速度处理密集坐标,最后实现动态人物的精确定位和姿态估计。该技术集目标检测、姿态估计、目标部分/实例分割等多种计算机视觉任务于一身的一个综合问题。(DensePost maps 2D image coordinates to 3D human body surface by in-depth learning, and processes dense coordinates at the speed of multiple frames per second. Finally, it realizes precise positioning and attitude estimation of dynamic characters. This technology integrates many kinds of computer vision tasks, such as target detection, attitude estimation, target part/instance segmentation, etc.)

文件列表:

DensePose-master, 0 , 2018-08-28
DensePose-master\.gitignore, 495 , 2018-08-28
DensePose-master\CMakeLists.txt, 2012 , 2018-08-28
DensePose-master\CODE_OF_CONDUCT.md, 286 , 2018-08-28
DensePose-master\CONTRIBUTING.md, 1250 , 2018-08-28
DensePose-master\DensePoseData, 0 , 2018-08-28
DensePose-master\DensePoseData\demo_data, 0 , 2018-08-28
DensePose-master\DensePoseData\demo_data\demo_dp_single_ann.pkl, 980845 , 2018-08-28
DensePose-master\DensePoseData\demo_data\demo_im.jpg, 149246 , 2018-08-28
DensePose-master\DensePoseData\demo_data\synth_UV_example.png, 25997 , 2018-08-28
DensePose-master\DensePoseData\demo_data\texture_atlas_200.png, 1237384 , 2018-08-28
DensePose-master\DensePoseData\demo_data\texture_from_SURREAL.png, 831242 , 2018-08-28
DensePose-master\DensePoseData\get_DensePose_COCO.sh, 346 , 2018-08-28
DensePose-master\DensePoseData\get_densepose_uv.sh, 163 , 2018-08-28
DensePose-master\DensePoseData\get_eval_data.sh, 173 , 2018-08-28
DensePose-master\DensePoseData\infer_out, 0 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im.jpg.pdf, 1056420 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im_INDS.png, 8801 , 2018-08-28
DensePose-master\DensePoseData\infer_out\demo_im_IUV.png, 77229 , 2018-08-28
DensePose-master\GETTING_STARTED.md, 2815 , 2018-08-28
DensePose-master\INSTALL.md, 6712 , 2018-08-28
DensePose-master\LICENSE, 19333 , 2018-08-28
DensePose-master\MODEL_ZOO.md, 3109 , 2018-08-28
DensePose-master\Makefile, 491 , 2018-08-28
DensePose-master\NOTICE, 1344 , 2018-08-28
DensePose-master\PoseTrack, 0 , 2018-08-28
DensePose-master\PoseTrack\DensePose-PoseTrack-Visualize.ipynb, 792870 , 2018-08-28
DensePose-master\PoseTrack\README.md, 3352 , 2018-08-28
DensePose-master\PoseTrack\configs, 0 , 2018-08-28
DensePose-master\PoseTrack\configs\DensePose_ResNet50_FPN_s1x-e2e.yaml, 1976 , 2018-08-28
DensePose-master\PoseTrack\get_DensePose_PoseTrack.sh, 696 , 2018-08-28
DensePose-master\README.md, 3216 , 2018-08-28
DensePose-master\challenge, 0 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose, 0 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\data_format.md, 3303 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\evaluation.md, 4694 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\example_results.json, 181922 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\readme.md, 3797 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\results_format.md, 2153 , 2018-08-28
DensePose-master\challenge\2018_COCO_DensePose\upload.md, 3823 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose, 0 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\data_format.md, 4449 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\evaluation.md, 4641 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\readme.md, 3594 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\results_format.md, 2157 , 2018-08-28
DensePose-master\challenge\2018_PoseTrack_DensePose\upload.md, 3873 , 2018-08-28
DensePose-master\challenge\encode_results_for_competition.py, 3508 , 2018-08-28
DensePose-master\cmake, 0 , 2018-08-28
DensePose-master\cmake\Summary.cmake, 1020 , 2018-08-28
DensePose-master\cmake\legacy, 0 , 2018-08-28
DensePose-master\cmake\legacy\Cuda.cmake, 9531 , 2018-08-28
DensePose-master\cmake\legacy\Dependencies.cmake, 1341 , 2018-08-28
DensePose-master\cmake\legacy\Modules, 0 , 2018-08-28
DensePose-master\cmake\legacy\Modules\FindCuDNN.cmake, 2100 , 2018-08-28
DensePose-master\cmake\legacy\Summary.cmake, 940 , 2018-08-28
DensePose-master\cmake\legacy\Utils.cmake, 10724 , 2018-08-28
DensePose-master\cmake\legacy\legacymake.cmake, 1621 , 2018-08-28
DensePose-master\configs, 0 , 2018-08-28
DensePose-master\configs\DensePoseKeyPointsMask_ResNet50_FPN_s1x-e2e.yaml, 2681 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN.yaml, 1975 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_32x8d_s1x-e2e.yaml, 2151 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_32x8d_s1x.yaml, 2155 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_s1x-e2e.yaml, 1977 , 2018-08-28
DensePose-master\configs\DensePose_ResNet101_FPN_s1x.yaml, 2117 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN.yaml, 1974 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_s1x-e2e.yaml, 1975 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_s1x.yaml, 2115 , 2018-08-28
DensePose-master\configs\DensePose_ResNet50_FPN_single_GPU.yaml, 2109 , 2018-08-28
DensePose-master\configs\rpn_densepose_only_R-50-FPN_1x.yaml, 1075 , 2018-08-28
DensePose-master\configs\rpn_densepose_only_X-101-32x8d-FPN_1x.yaml, 1263 , 2018-08-28
DensePose-master\detectron, 0 , 2018-08-28
DensePose-master\detectron\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\core, 0 , 2018-08-28
DensePose-master\detectron\core\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\core\config.py, 47570 , 2018-08-28
DensePose-master\detectron\core\rpn_generator.py, 9280 , 2018-08-28
DensePose-master\detectron\core\test.py, 37386 , 2018-08-28
DensePose-master\detectron\core\test_engine.py, 15303 , 2018-08-28
DensePose-master\detectron\core\test_retinanet.py, 7104 , 2018-08-28
DensePose-master\detectron\datasets, 0 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper, 0 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-08-28
DensePose-master\detectron\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-08-28
DensePose-master\detectron\datasets\__init__.py, 0 , 2018-08-28
DensePose-master\detectron\datasets\cityscapes_json_dataset_evaluator.py, 2960 , 2018-08-28
DensePose-master\detectron\datasets\coco_to_cityscapes_id.py, 2495 , 2018-08-28
DensePose-master\detectron\datasets\data, 0 , 2018-08-28
DensePose-master\detectron\datasets\data\README.md, 3187 , 2018-08-28
DensePose-master\detectron\datasets\dataset_catalog.py, 8164 , 2018-08-28
DensePose-master\detectron\datasets\densepose_cocoeval.py, 39088 , 2018-08-28
DensePose-master\detectron\datasets\dummy_datasets.py, 1899 , 2018-08-28
DensePose-master\detectron\datasets\json_dataset.py, 20722 , 2018-08-28
DensePose-master\detectron\datasets\json_dataset_evaluator.py, 19172 , 2018-08-28
DensePose-master\detectron\datasets\roidb.py, 7497 , 2018-08-28
DensePose-master\detectron\datasets\task_evaluation.py, 14367 , 2018-08-28
DensePose-master\detectron\datasets\voc_dataset_evaluator.py, 6719 , 2018-08-28
DensePose-master\detectron\datasets\voc_eval.py, 7386 , 2018-08-28
DensePose-master\detectron\modeling, 0 , 2018-08-28
DensePose-master\detectron\modeling\FPN.py, 20218 , 2018-08-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Assignment3
    说明:  向图像里面加入水印,然后再从图像中将水印提取出来(Adding a watermark to the images inside, and then from the image watermark will be extracted)
    2021-02-21 16:39:42下载
    积分:1
  • 水果检测
    此程序用matlab实现了在水果图片中识别出水果的功能,识别成功率较高(This program uses MATLAB to realize the function of recognizing fruits in fruit pictures, and the recognition rate is higher.)
    2020-07-01 08:20:02下载
    积分:1
  • gaijinfenshuiling
    改进分水岭算法,详细注解标在m文件内了,希望对大家有用(Improved watershed algorithm and hope for all of us)
    2009-11-09 21:26:15下载
    积分:1
  • faxiangliang
    点云三维重建中需要用的法向量计算,能够有效避免法向量不一致的问题,更好进行三维重建。测试有用。(Normal vector calculation point cloud reconstruction in need, and can effectively avoid the problem of inconsistent normals, better three-dimensional reconstruction. Useful for testing.)
    2020-10-08 14:37:36下载
    积分:1
  • final1AHE0310
    通过PCA+Retinex对图像进行图像增强处理(Image enhancement processing by PCA+Retinex)
    2018-03-08 11:29:53下载
    积分:1
  • haar
    基于拉haar小波的图像增强,与传统直方图均衡化相比较,效果更好。(Pull-based haar wavelet image enhancement, with the traditional histogram equalization compared to better.)
    2020-12-26 02:59:03下载
    积分:1
  • 钢轨断面
    说明:  60轨CAD断面图,严格按照国家标准作图,60轨CAD断面图(Cross-sectional drawing of 60-rail CAD)
    2021-04-01 09:59:08下载
    积分:1
  • GEE平台LULC分类
    说明:  基于Landsat8卫星影像数据,在GEE平台中的监督分类(Supervised classification based on landsat8 satellite image data in GEE platform)
    2020-12-27 19:04:14下载
    积分:1
  • windowPCA
    改进后的pca用于故障检测与诊断,应用于TE的化工过程,仿真结果比传统的pca方法效果更好(Pca for improved fault detection and diagnosis of chemical process applied to TE, the simulation results than the traditional method pca better)
    2009-07-06 18:35:47下载
    积分:1
  • Denoising-Custom-master
    说明:  对微震图像进行去燥,利用同步压缩连续小波变换进行自动微震去噪和起始检测。(Denoising the microseismic image,automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform.)
    2019-04-17 13:53:11下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载