登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2020-06-19 发布
0 136
下载积分: 1 下载次数: 11

代码说明:

说明:  CNN,DBN算法可以对手写体数字进行识别,准确率高(CNN and DBN algorithm can recognize handwritten numerals with high accuracy)

文件列表:

DeepLearnToolbox-master, 0 , 2014-01-12
DeepLearnToolbox-master\.travis.yml, 249 , 2014-01-12
DeepLearnToolbox-master\CAE, 0 , 2014-01-12
DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2014-01-12
DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2014-01-12
DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2014-01-12
DeepLearnToolbox-master\CAE\caedown.m, 259 , 2014-01-12
DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2014-01-12
DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2014-01-12
DeepLearnToolbox-master\CAE\caesdlm.m, 845 , 2014-01-12
DeepLearnToolbox-master\CAE\caetrain.m, 1148 , 2014-01-12
DeepLearnToolbox-master\CAE\caeup.m, 489 , 2014-01-12
DeepLearnToolbox-master\CAE\max3d.m, 173 , 2014-01-12
DeepLearnToolbox-master\CAE\scaesetup.m, 1937 , 2014-01-12
DeepLearnToolbox-master\CAE\scaetrain.m, 270 , 2014-01-12
DeepLearnToolbox-master\CNN, 0 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnapplygrads.m, 575 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnbp.m, 2141 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnff.m, 1774 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnnumgradcheck.m, 3430 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnsetup.m, 2020 , 2014-01-12
DeepLearnToolbox-master\CNN\cnntest.m, 193 , 2014-01-12
DeepLearnToolbox-master\CNN\cnntrain.m, 845 , 2014-01-12
DeepLearnToolbox-master\CONTRIBUTING.md, 544 , 2014-01-12
DeepLearnToolbox-master\create_readme.sh, 744 , 2014-01-12
DeepLearnToolbox-master\data, 0 , 2014-01-12
DeepLearnToolbox-master\data\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-master\DBN, 0 , 2019-08-01
DeepLearnToolbox-master\DBN\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-master\DBN\dbnsetup.m, 557 , 2014-01-12
DeepLearnToolbox-master\DBN\dbntrain.m, 232 , 2014-01-12
DeepLearnToolbox-master\DBN\dbnunfoldtonn.m, 425 , 2014-01-12
DeepLearnToolbox-master\DBN\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-master\DBN\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-master\DBN\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-master\DBN\fliplrf.m, 543 , 2014-01-12
DeepLearnToolbox-master\DBN\flipudf.m, 576 , 2014-01-12
DeepLearnToolbox-master\DBN\guzhangNumber.xls, 406528 , 2019-06-03
DeepLearnToolbox-master\DBN\im2patches.m, 313 , 2014-01-12
DeepLearnToolbox-master\DBN\isOctave.m, 108 , 2014-01-12
DeepLearnToolbox-master\DBN\makeLMfilters.m, 1895 , 2014-01-12
DeepLearnToolbox-master\DBN\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-master\DBN\myOctaveVersion.m, 169 , 2014-01-12
DeepLearnToolbox-master\DBN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-master\DBN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-master\DBN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-master\DBN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-master\DBN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-master\DBN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-master\DBN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-master\DBN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-master\DBN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-master\DBN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-master\DBN\normalize.m, 97 , 2014-01-12
DeepLearnToolbox-master\DBN\patches2im.m, 242 , 2014-01-12
DeepLearnToolbox-master\DBN\randcorr.m, 283 , 2014-01-12
DeepLearnToolbox-master\DBN\randp.m, 2083 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmdown.m, 90 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmtrain.m, 1401 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmup.m, 89 , 2014-01-12
DeepLearnToolbox-master\DBN\rnd.m, 49 , 2014-01-12
DeepLearnToolbox-master\DBN\sigm.m, 48 , 2014-01-12
DeepLearnToolbox-master\DBN\sigmrnd.m, 126 , 2014-01-12
DeepLearnToolbox-master\DBN\softmax.m, 256 , 2014-01-12
DeepLearnToolbox-master\DBN\tanh_opt.m, 54 , 2014-01-12
DeepLearnToolbox-master\DBN\visualize.m, 1072 , 2014-01-12
DeepLearnToolbox-master\DBN\whiten.m, 183 , 2014-01-12
DeepLearnToolbox-master\DBN\zscore.m, 137 , 2014-01-12
DeepLearnToolbox-master\LICENSE, 1313 , 2014-01-12
DeepLearnToolbox-master\NN, 0 , 2014-01-12
DeepLearnToolbox-master\NN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-master\NN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-master\NN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-master\NN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-master\NN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-master\NN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-master\NN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-master\NN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-master\NN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-master\NN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-master\README.md, 8730 , 2014-01-12
DeepLearnToolbox-master\README_header.md, 2256 , 2014-01-12
DeepLearnToolbox-master\REFS.md, 950 , 2014-01-12
DeepLearnToolbox-master\SAE, 0 , 2014-01-12
DeepLearnToolbox-master\SAE\saesetup.m, 132 , 2014-01-12
DeepLearnToolbox-master\SAE\saetrain.m, 308 , 2014-01-12
DeepLearnToolbox-master\tests, 0 , 2014-01-12
DeepLearnToolbox-master\tests\runalltests.m, 165 , 2014-01-12
DeepLearnToolbox-master\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_CNN.m, 981 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_DBN.m, 1644 , 2019-08-01
DeepLearnToolbox-master\tests\test_example_NN.m, 3247 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_SAE.m, 934 , 2014-01-12
DeepLearnToolbox-master\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-01-12
DeepLearnToolbox-master\util, 0 , 2014-01-12
DeepLearnToolbox-master\util\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-master\util\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-master\util\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-master\util\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-master\util\fliplrf.m, 543 , 2014-01-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mianjifa
    自己开发的基于阶跃响应曲线的面积法程序,实验结果良好。(Their own development based on the step response curve area method procedures, the experimental results well.)
    2009-03-12 15:28:03下载
    积分:1
  • mycomet
    由matlab的commet函数改编而来,在原来基础上新增控制质点运动速度的功能(The commet by the matlab function adapted from the original particle motion based on the new speed control function)
    2013-11-08 11:18:38下载
    积分:1
  • active_filter_demo
    active filter is a imrportant in mordern life and power quanlity
    2010-09-06 12:58:40下载
    积分:1
  • processing-time--signals-
    matlab时域信号处理算例,包括带通滤波、高通滤波、低通滤波(signals processing in time domain ,including Low pass filter ,high pass filter,Band pass filter)
    2012-04-05 13:46:02下载
    积分:1
  • drawing
    绘图,其中包含了源代码,是M文件,还有PPT的相关教程(Drawing, which contains the source code, is M-file, as well as the related tutorial PPT)
    2011-06-19 00:34:17下载
    积分:1
  • svm_numberByHand
    自己编写的一个matlab实现手写数字的识别(I have written a matlab achieve recognition of handwritten digits)
    2015-04-02 17:54:08下载
    积分:1
  • 3
    说明:  thesis about mimo ofdm synchronization
    2010-08-22 00:12:25下载
    积分:1
  • LW50
    simultion of wind power generation in matlab
    2011-12-20 19:31:00下载
    积分:1
  • SIRP
    基于SIRP方法的相干相关K分布雷达杂波的建模与仿真程序,包含三个文件。主文件为K_distribution.m,两个函数文件nonline_eq_sirp.m,fseries.m。(K-distribution radar clutter simulation code based on SIRP method,including three files. The main file is K_distribution.m, the two function files are nonline_eq_sirp.m,fseries.m respectively.)
    2020-11-26 20:39:30下载
    积分:1
  • chen_attractor
    这是一个混沌理论中重要的chen映射的程序。通过曲线很容易看到奇妙的混沌吸引子(Chaos Theory important Rezeption mapping procedures. Curve is easy to see wonderful chaotic attractor)
    2007-03-07 20:07:04下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载