登录
首页 » matlab » MFOA

MFOA

于 2020-06-16 发布
0 993
下载积分: 1 下载次数: 10

代码说明:

说明:  基于CEC——2017benchmark测试集,计算最优 修正的果蝇算法,弥补原始果蝇算法在负数集上的缺失(modify fruit fly optimization)

文件列表:

cec17_func.cpp, 41819 , 2019-01-17
cec17_func.mexw64, 51712 , 2017-06-29
input_data, 0 , 2019-01-17
input_data\M_10_D10.txt, 2520 , 2016-09-04
input_data\M_10_D100.txt, 250200 , 2016-09-04
input_data\M_10_D2.txt, 104 , 2016-09-04
input_data\M_10_D20.txt, 10040 , 2016-09-04
input_data\M_10_D30.txt, 22560 , 2016-09-04
input_data\M_10_D50.txt, 62600 , 2016-09-04
input_data\M_11_D10.txt, 2520 , 2016-09-04
input_data\M_11_D100.txt, 250200 , 2016-09-04
input_data\M_11_D30.txt, 22560 , 2016-09-04
input_data\M_11_D50.txt, 62600 , 2016-09-04
input_data\M_12_D10.txt, 2520 , 2016-09-04
input_data\M_12_D100.txt, 250200 , 2016-09-04
input_data\M_12_D30.txt, 22560 , 2016-09-04
input_data\M_12_D50.txt, 62600 , 2016-09-04
input_data\M_13_D10.txt, 2520 , 2016-09-04
input_data\M_13_D100.txt, 250200 , 2016-09-04
input_data\M_13_D30.txt, 22560 , 2016-09-04
input_data\M_13_D50.txt, 62600 , 2016-09-04
input_data\M_14_D10.txt, 2520 , 2016-09-04
input_data\M_14_D100.txt, 250200 , 2016-09-04
input_data\M_14_D30.txt, 22560 , 2016-09-04
input_data\M_14_D50.txt, 62600 , 2016-09-04
input_data\M_15_D10.txt, 2520 , 2016-09-04
input_data\M_15_D100.txt, 250200 , 2016-09-04
input_data\M_15_D30.txt, 22560 , 2016-09-04
input_data\M_15_D50.txt, 62600 , 2016-09-04
input_data\M_16_D10.txt, 2520 , 2016-09-04
input_data\M_16_D100.txt, 250200 , 2016-09-04
input_data\M_16_D30.txt, 22560 , 2016-09-04
input_data\M_16_D50.txt, 62600 , 2016-09-04
input_data\M_17_D10.txt, 2520 , 2016-09-04
input_data\M_17_D100.txt, 250200 , 2016-09-04
input_data\M_17_D30.txt, 22560 , 2016-09-04
input_data\M_17_D50.txt, 62600 , 2016-09-04
input_data\M_18_D10.txt, 2520 , 2016-09-04
input_data\M_18_D100.txt, 250200 , 2016-09-04
input_data\M_18_D30.txt, 22560 , 2016-09-04
input_data\M_18_D50.txt, 62600 , 2016-09-04
input_data\M_19_D10.txt, 2520 , 2016-09-04
input_data\M_19_D100.txt, 250200 , 2016-09-04
input_data\M_19_D30.txt, 22560 , 2016-09-04
input_data\M_19_D50.txt, 62600 , 2016-09-04
input_data\M_1_D10.txt, 2520 , 2016-09-04
input_data\M_1_D100.txt, 250200 , 2016-09-04
input_data\M_1_D2.txt, 104 , 2016-09-04
input_data\M_1_D20.txt, 10040 , 2016-09-04
input_data\M_1_D30.txt, 22560 , 2016-09-04
input_data\M_1_D50.txt, 62600 , 2016-09-04
input_data\M_20_D10.txt, 2520 , 2016-09-04
input_data\M_20_D100.txt, 250200 , 2016-09-09
input_data\M_20_D20.txt, 10040 , 2016-09-04
input_data\M_20_D30.txt, 22560 , 2016-09-04
input_data\M_20_D50.txt, 62600 , 2016-09-04
input_data\M_21_D10.txt, 25200 , 2016-09-04
input_data\M_21_D100.txt, 2502000 , 2016-09-04
input_data\M_21_D2.txt, 832 , 2016-09-04
input_data\M_21_D20.txt, 100400 , 2016-09-04
input_data\M_21_D30.txt, 225600 , 2016-09-04
input_data\M_21_D50.txt, 626000 , 2016-09-04
input_data\M_22_D10.txt, 25200 , 2016-09-04
input_data\M_22_D100.txt, 2502000 , 2016-09-04
input_data\M_22_D2.txt, 832 , 2016-09-04
input_data\M_22_D20.txt, 100400 , 2016-09-04
input_data\M_22_D30.txt, 225600 , 2016-09-04
input_data\M_22_D50.txt, 626000 , 2016-09-04
input_data\M_23_D10.txt, 25200 , 2016-09-04
input_data\M_23_D100.txt, 2502000 , 2016-09-04
input_data\M_23_D2.txt, 832 , 2016-09-04
input_data\M_23_D20.txt, 100400 , 2016-09-04
input_data\M_23_D30.txt, 225600 , 2016-09-04
input_data\M_23_D50.txt, 626000 , 2016-09-04
input_data\M_24_D10.txt, 25200 , 2016-09-04
input_data\M_24_D100.txt, 2502000 , 2016-09-04
input_data\M_24_D2.txt, 832 , 2016-09-04
input_data\M_24_D20.txt, 100400 , 2016-09-04
input_data\M_24_D30.txt, 225600 , 2016-09-04
input_data\M_24_D50.txt, 626000 , 2016-09-04
input_data\M_25_D10.txt, 25200 , 2016-09-04
input_data\M_25_D100.txt, 2502000 , 2016-09-04
input_data\M_25_D2.txt, 832 , 2016-09-04
input_data\M_25_D20.txt, 100400 , 2016-09-04
input_data\M_25_D30.txt, 225600 , 2016-09-04
input_data\M_25_D50.txt, 626000 , 2016-09-04
input_data\M_26_D10.txt, 25200 , 2016-09-04
input_data\M_26_D100.txt, 2502000 , 2016-09-04
input_data\M_26_D2.txt, 832 , 2016-09-04
input_data\M_26_D20.txt, 100400 , 2016-09-04
input_data\M_26_D30.txt, 225600 , 2016-09-04
input_data\M_26_D50.txt, 626000 , 2016-09-04
input_data\M_27_D10.txt, 25200 , 2016-09-04
input_data\M_27_D100.txt, 2502000 , 2016-09-04
input_data\M_27_D2.txt, 832 , 2016-09-04
input_data\M_27_D20.txt, 100400 , 2016-09-04
input_data\M_27_D30.txt, 225600 , 2016-09-04
input_data\M_27_D50.txt, 626000 , 2016-09-04
input_data\M_28_D10.txt, 25200 , 2016-09-04
input_data\M_28_D100.txt, 2502000 , 2016-09-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • XPSO
    说明:  基于多样本和遗忘能力的扩展粒子群算法,关于粒子群改进的代码,提供给大家学习。(An expanded particle swarm optimization based on multi-exemplar and forgetting ability)
    2021-01-31 18:58:36下载
    积分:1
  • CEC 2017 bound constrained benchmarks
    说明:  CEC2017前几名的MATLAB算法实现 有EBOwithCMAR; jSO; LSHADE_SPACMA; LSHADE-cnEpSin 各种参数都可以调整,包括种群数量、F因子、变异率、交叉率等(The realization of MATLAB algorithm for the top few of cec217. There are ebowithcmar; JSO; lshade_spacma; lshade cnepsin. Various parameters can be adjusted, including population number, F factor, mutation rate, crossover rate, etc.)
    2021-04-21 15:08:49下载
    积分:1
  • 爬山-遗传-极限学习机
    说明:  爬山改进遗传算法,提供更快的收敛速度,并用于优化极限学习机权值(Mountain climbing improved genetic algorithm to provide faster convergence speed and to optimize the weight of extreme learning machine)
    2021-04-13 14:38:56下载
    积分:1
  • 精英_变异遗传
    说明:  基于精英变异算法的电动汽车充电优化策略以及结果的可视化(EV charging optimization strategy based on elite mutation algorithm and the visualization of results)
    2019-12-26 14:46:08下载
    积分:1
  • 灰狼优源代码
    说明:  灰狼算法,一种新型群体智能优化算法,将改进的灰狼算法优化神经网络模型,提高收敛速度,避免陷入局部最优解(The grey wolf algorithm (GWO), which is inspired by the predatory behavior of the gray wolf group, is a new group intelligent optimization algorithm that imitates the leadership of gray wolf population and hunting mechanism in nature)
    2020-03-07 14:14:59下载
    积分:1
  • ABC
    matlab实现人工蜂群优化(ABC)算法,用于最优化计算(MATLAB realizes artificial bee colony optimization (ABC) algorithm for optimization calculation)
    2020-11-20 10:29:38下载
    积分:1
  • pso
    粒子群算法的寻优机制,另附十余个测试函数。主程序为test_basic(Particle Optimization Algorithm)
    2020-06-24 00:40:02下载
    积分:1
  • MFOA
    基于CEC——2017benchmark测试集,计算最优 修正的果蝇算法,弥补原始果蝇算法在负数集上的缺失(modify fruit fly optimization)
    2020-06-16 04:00:02下载
    积分:1
  • GSA
    引力搜索算法优化函数,可以运行,适合学习这个算法用(The gravitational search algorithm optimizes functions that can be run.)
    2018-11-01 13:19:10下载
    积分:1
  • GA
    说明:  经典遗传算法案例,利用遗传算法求解铁罐问题(genetic algorithm optimization)
    2019-08-17 11:06:01下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载