-
m_8
关于MATALAB的书籍文章很经典值得一看解压后必须使用超星浏览器观看(MATALAB article on classic books worth a visit after decompression must use a browser Chaoxing Views)
- 2008-05-11 12:34:37下载
- 积分:1
-
mydefunction
export To Zip Identifies file
- 2010-12-16 19:40:58下载
- 积分:1
-
saf
基于MATLAB的非线性薛定谔方程求解,文献资料(matlab to solve NLSE)
- 2013-12-20 16:32:18下载
- 积分:1
-
SubFunctions
MATLAB CODE FUNCTION CASCADE DETECT FACE AND RECOGNITION
- 2014-02-11 05:03:20下载
- 积分:1
-
Cloud-computing-QoS-conflict
QoS冲突;冲突解决;层次分析法;TOPSIS方法(QoS conflict conflict resolution AHP TOPSIS Method)
- 2013-12-22 20:06:11下载
- 积分:1
-
SGAfunctions
说明: 遗传算法在MATLAB中的一些简单函数的应用 适合初学者 (Genetic Algorithm in MATLAB in the application of some simple functions for beginners)
- 2010-04-28 09:29:59下载
- 积分:1
-
jp
说明: 基于频熵的改进减谱算法,程序中的r值,需根据实际情况更改大小!(Entropy-based frequency spectrum by improving the algorithm, the program of the r value, need to change the size of the actual situation!)
- 2010-05-21 22:28:53下载
- 积分:1
-
Simulations-MPPT
maximum power point traking
p and o
- 2014-01-07 06:10:09下载
- 积分:1
-
falspos
root finding by false position
- 2010-02-17 07:34:00下载
- 积分:1
-
xiashan
MATLAB 牛顿下山法的一个小程序,原理就不详细说了。因牛顿迭代法受初值选取的限制,为防止迭代发散,对迭代过程再附加一项要求:|f(x(k+1))|<|f(x(k))|,将牛顿法迭代的结果:x(k+1) =x(k)-f(x(k))/f (x(k))和前一近似值x(k)适当加权平均做为新的改进值:x(k+1)=u*x(k+1) +(1-u)*x(k),其中u(0<>
迭代时u取1开始,逐次减半计算,直至附加要求符合为止。实例计算中x(k)=x(0)不变,只更新u和x(k+1),直至:|f(x(k+1))|<|f(x(k))|(即|f(x(1))|<|f(x(0))|),然后更新下山因子为u=1,继续以牛顿法迭代。(MATLAB Newton-down a small program, the principle is not explained in detail. Newton iteration by the initial value of the selected limit, in order to prevent additional iterative divergence, the iterative process a request: | f (x (k+1)) | < | f (x (k)) | Newton iteration Results: x (k+1) ' = X (k)-f (x (k))/f' (x (k)) and a previous approximation x (k), appropriately weighted average as a new improved value: x (k+1 ) = u* x (k+1) ' + (1-u)* x (k), where u (0 < u> iteration take successive calculated at 50 until the additional requirements found so far. examples of calculation of X ( k) = x (0) unchanged profile u and x (k+1, hungry) until: | f (x (k+1)) | < | f (x (k)) | (i.e. | f (x (1)) | < | f (x (0)) |), then profile downhill factor for u = 1, to continue to Newton iteration.)
- 2013-05-15 08:52:09下载
- 积分:1