登录
首页 » matlab » sparse-coprime-

sparse-coprime-

于 2020-07-10 发布
0 192
下载积分: 1 下载次数: 40

代码说明:

说明:  sparse coprime array direction of arrival

文件列表:

sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\BeampatternLinearArray.m, 1562 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\CoprimeArrayAnalysis.m, 4383 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\FullArrayAnalysis.m, 3046 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\NestedArrayAnalysis.m, 4376 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ProdMinMUSIC.m, 5084 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ProductMinBeampattern.m, 1955 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\RUNtemporalFT.m, 71 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\coarrayTotal.m, 1243 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\directionEstimates.m, 10539 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ifourierTrans.m, 473 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\temporalFT.m, 897 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\README.md, 1459 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_1.fig, 56518 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_10.fig, 28893 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_11.fig, 48801 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_12.fig, 24647 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_13.fig, 48523 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_14.fig, 29224 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_15.fig, 32900 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_16.fig, 31578 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_17.fig, 47908 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_18.fig, 23423 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_19.fig, 47082 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_2.fig, 34709 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_3.fig, 41694 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_4.fig, 34399 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_5.fig, 46905 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_6.fig, 25967 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_7.fig, 48469 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_8.fig, 33445 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_9.fig, 39791 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_1.fig, 57178 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_10.fig, 29385 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_11.fig, 49454 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_12.fig, 24988 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_13.fig, 49380 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_14.fig, 29694 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_15.fig, 33349 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_16.fig, 32116 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_17.fig, 48806 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_18.fig, 23652 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_19.fig, 48050 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_2.fig, 35145 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_3.fig, 42341 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_4.fig, 34879 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_5.fig, 47584 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_6.fig, 26247 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_7.fig, 49136 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_8.fig, 33852 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_9.fig, 40438 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_1.mat, 16835 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_10.mat, 6884 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_11.mat, 13839 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_12.mat, 5704 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_13.mat, 13806 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_14.mat, 7052 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_15.mat, 8254 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_16.mat, 7790 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_17.mat, 13467 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_18.mat, 5374 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_19.mat, 13153 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_2.mat, 8931 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_3.mat, 11431 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_4.mat, 8762 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_5.mat, 13074 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_6.mat, 6080 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_7.mat, 13670 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_8.mat, 8458 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_9.mat, 10761 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_1.mat, 17046 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_10.mat, 7007 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_11.mat, 14003 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_12.mat, 5804 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_13.mat, 14024 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_14.mat, 7165 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_15.mat, 8383 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_16.mat, 7958 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_17.mat, 13741 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_18.mat, 5475 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_19.mat, 13429 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_2.mat, 9053 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_3.mat, 11548 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_4.mat, 8888 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_5.mat, 13240 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_6.mat, 6149 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_7.mat, 13871 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_8.mat, 8577 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_9.mat, 10942 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\Old_tables, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\Old_tables\00001_res, 0 , 2019-03-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • algorithm-phase
    说明:  基于相位一致的边缘检测算法,matlab源代码(Based on the same edge detection algorithm phase, matlab source code)
    2011-02-23 21:13:35下载
    积分:1
  • rtdxtutorial
    说明:  一个MATLAB的应用程序,很方便的!使用时需要转换为M文件。(a MATLAB applications, a convenient! Use need to change for the M documents.)
    2006-03-16 16:38:05下载
    积分:1
  • smith
    基于matlab smith圆图画法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(Circle drawing method based on matlab smith. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)
    2010-05-29 15:18:54下载
    积分:1
  • slip_frequency_control_Speed_est
    转差频率矢量控制源程序,在实验平台上能够稳定运行(Slip frequency vector control source code, in the experimental platform can stable operation )
    2013-12-14 20:05:33下载
    积分:1
  • 数值分析常用
    数值分析常用的一些公式,比如jacobi,newton等等。(numerical analysis of some commonly used formula, such as Jacobi, chemotherapy and so on.)
    2005-06-17 18:08:11下载
    积分:1
  • AFPOWER
    State variable representation of the swing equation of the one-machine system after fault clearance.
    2014-10-07 14:58:21下载
    积分:1
  • mfcc
    语音识别MFCC特征提取matlab代码。 「梅尔倒频谱系数」(Mel-scale Frequency Cepstral Coefficients,简称MFCC),是最常用到的语音特征,此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音辨识。(Speech recognition MFCC feature extraction matlab code. Mel cepstrum coefficient (Mel- scale Frequency Cepstral Coefficients, MFCC), is the most commonly used to the phonetic characteristics of this parameter given ear to the feelings of different frequencies, so especially suitable for use in speech recognition)
    2015-06-16 11:47:51下载
    积分:1
  • Plane_Azimuth_Fre
    基于面阵的信号方位角与频率的联合估计,采用MUSIC算法(Based on the planar array of signal azimuth and frequency of joint estimation using MUSIC algorithm)
    2008-04-15 09:27:44下载
    积分:1
  • biaodingban
    说明:  产生相机模拟实验标定板,行数,列数以及间距有自己设定,例如(张正友标定板(9,11,25)).(Simulation produces the camera calibration board, the number of rows, columns and spacing of their own settings, such as (Zhang Zhengyou calibration plate (9,11,25)).)
    2011-03-21 19:26:40下载
    积分:1
  • Tabular-method-procedures
    用表上作业法求解运输问题,基于matlab的算法实现(Tabular method procedures)
    2011-04-29 22:45:32下载
    积分:1
  • 696516资源总数
  • 106425会员总数
  • 12今日下载