登录
首页 » matlab » sparse-coprime-

sparse-coprime-

于 2020-07-10 发布
0 161
下载积分: 1 下载次数: 40

代码说明:

说明:  sparse coprime array direction of arrival

文件列表:

sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\BeampatternLinearArray.m, 1562 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\CoprimeArrayAnalysis.m, 4383 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\FullArrayAnalysis.m, 3046 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\NestedArrayAnalysis.m, 4376 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ProdMinMUSIC.m, 5084 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ProductMinBeampattern.m, 1955 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\RUNtemporalFT.m, 71 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\coarrayTotal.m, 1243 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\directionEstimates.m, 10539 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\ifourierTrans.m, 473 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\3rd party functions\temporalFT.m, 897 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\README.md, 1459 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_1.fig, 56518 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_10.fig, 28893 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_11.fig, 48801 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_12.fig, 24647 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_13.fig, 48523 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_14.fig, 29224 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_15.fig, 32900 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_16.fig, 31578 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_17.fig, 47908 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_18.fig, 23423 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_19.fig, 47082 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_2.fig, 34709 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_3.fig, 41694 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_4.fig, 34399 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_5.fig, 46905 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_6.fig, 25967 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_7.fig, 48469 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_8.fig, 33445 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Minimum\2_100_9.fig, 39791 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_1.fig, 57178 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_10.fig, 29385 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_11.fig, 49454 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_12.fig, 24988 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_13.fig, 49380 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_14.fig, 29694 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_15.fig, 33349 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_16.fig, 32116 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_17.fig, 48806 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_18.fig, 23652 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_19.fig, 48050 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_2.fig, 35145 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_3.fig, 42341 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_4.fig, 34879 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_5.fig, 47584 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_6.fig, 26247 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_7.fig, 49136 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_8.fig, 33852 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Figures\Product\2_100_9.fig, 40438 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_1.mat, 16835 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_10.mat, 6884 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_11.mat, 13839 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_12.mat, 5704 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_13.mat, 13806 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_14.mat, 7052 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_15.mat, 8254 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_16.mat, 7790 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_17.mat, 13467 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_18.mat, 5374 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_19.mat, 13153 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_2.mat, 8931 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_3.mat, 11431 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_4.mat, 8762 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_5.mat, 13074 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_6.mat, 6080 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_7.mat, 13670 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_8.mat, 8458 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Minimum\2_100_9.mat, 10761 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_1.mat, 17046 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_10.mat, 7007 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_11.mat, 14003 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_12.mat, 5804 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_13.mat, 14024 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_14.mat, 7165 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_15.mat, 8383 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_16.mat, 7958 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_17.mat, 13741 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_18.mat, 5475 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_19.mat, 13429 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_2.mat, 9053 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_3.mat, 11548 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_4.mat, 8888 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_5.mat, 13240 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_6.mat, 6149 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_7.mat, 13871 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_8.mat, 8577 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\00001_res_\Product\2_100_9.mat, 10942 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\Old_tables, 0 , 2019-03-30
sparse-coprime-sensor-arrays-60ec3c9a1c2219ddfc896883c09933df546eb865\results\min_prod_analysis\Old_tables\00001_res, 0 , 2019-03-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • gui.tar
    ejemplo de desarrollo de guis en matlab
    2010-05-15 19:36:56下载
    积分:1
  • Elevator
    elevator contoller to control the movement of lift
    2013-08-21 17:08:20下载
    积分:1
  • power-system-state-estimator
    电力系统状态估计的程序,可以进行简单的14机模型的计算(Power system state estimation procedures, a simple model for the calculation of the 14 machines)
    2013-03-21 16:41:02下载
    积分:1
  • gm21
    程序名称:gm21.m GM(2,1)模型 程序功能:利用GM(2,1)模型进行预测。 程序编写:mongvi@126.com 开发指导:刘思峰教授 程序发布:南京航空航天大学灰色系统研究所(Program name: GM gm21.m (2,1) model Program function: using GM (2,1) model to predict. Programming: mongvi@126.com Development direction: Professor Liu Sifeng)
    2015-10-24 21:19:05下载
    积分:1
  • em_ghmm
    EM算法,用于估计参数的一个初级入门实例(EM algorithm, used to estimate the parameters of a primary entry examples)
    2021-04-27 17:18:44下载
    积分:1
  • music_evzero
    此程序是在假设已知波达角的情况下进行仿真验证的实验,零陷music波速成形。(This procedure is known in the hypothetical case of DOA conducted simulation experiments, velocity forming nulls music.)
    2013-11-15 09:22:54下载
    积分:1
  • nn
    说明:  内含用MATLAB编写的三个神经网络应用实例,包括BP网络和RBF网络(Using MATLAB includes the preparation of the three neural network application, including the BP network and RBF network)
    2008-12-13 12:08:00下载
    积分:1
  • yiweirechuandao
    使用matlab语言编程求解一维热传导方程(Using the matlab programming language for solving one dimensional heat conduction equation)
    2011-04-28 18:13:18下载
    积分:1
  • test_1
    Clark变换与Inv_Clark变换,引入输入信号进过测试能够实现功能(Clark and Inv_Clark)
    2013-09-05 16:45:10下载
    积分:1
  • Wines-Evaluation
    2012年全国大学生数学建模竞赛题目--葡萄酒的评价。文件中包含葡萄酒成分数据(Excel文件)、各种数据统计处理的MATLAB函数(已封装好,直接调用),包括:数据预处理、灰色预测、灰色关联度、基于熵权法的模糊综合评价、主成分分析、系统聚类、多元线性回归等程序。(Wines Evaluation from the title of 2012 National Undergraduate Mathematical ModelingContest. The file includes many MATLAB codes about statistical analysis of data.For example: Principal component analysis Grey Relational Analysis Fuzzy Comprehensive Evaluation Based on Entropy Method System Clustering Grey Prediction Multiple linear regression and so on. We can call them directly.)
    2021-03-17 23:49:20下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载