登录
首页 » matlab » 资料

资料

于 2019-12-22 发布
0 154
下载积分: 1 下载次数: 3

代码说明:

说明:  使用支持向量机的方法来进行旋转机械故障机理的。(Support vector machine (SVM) is used to study the fault mechanism of rotating machinery.)

文件列表:

资料, 0 , 2019-12-22
资料\105.mat, 2910768 , 2019-12-17
资料\97.mat, 3903344 , 2019-12-17
资料\label.mat, 194 , 2019-12-18
资料\libsvm-3.24, 0 , 2019-12-20
资料\libsvm-3.24\COPYRIGHT, 1497 , 2019-09-11
资料\libsvm-3.24\FAQ.html, 83242 , 2019-09-11
资料\libsvm-3.24\Makefile, 732 , 2019-09-11
资料\libsvm-3.24\Makefile.win, 1135 , 2019-09-11
资料\libsvm-3.24\README, 28624 , 2019-11-26
资料\libsvm-3.24\bedroom.mat, 1358 , 2019-11-03
资料\libsvm-3.24\date.mat, 234 , 2019-11-04
资料\libsvm-3.24\heart_scale.mat, 27670 , 2019-09-11
资料\libsvm-3.24\java, 0 , 2019-12-20
资料\libsvm-3.24\java\Makefile, 659 , 2019-09-11
资料\libsvm-3.24\java\libsvm, 0 , 2019-12-20
资料\libsvm-3.24\java\libsvm\svm.java, 64412 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm.m4, 63609 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm_model.java, 868 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm_node.java, 115 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm_parameter.java, 1285 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm_print_interface.java, 87 , 2019-09-11
资料\libsvm-3.24\java\libsvm\svm_problem.java, 136 , 2019-09-11
资料\libsvm-3.24\java\libsvm.jar, 55059 , 2019-09-11
资料\libsvm-3.24\java\svm_predict.java, 5137 , 2019-09-11
资料\libsvm-3.24\java\svm_scale.java, 8937 , 2019-09-11
资料\libsvm-3.24\java\svm_toy.java, 12262 , 2019-09-11
资料\libsvm-3.24\java\svm_train.java, 8354 , 2019-09-11
资料\libsvm-3.24\java\test_applet.html, 81 , 2019-09-11
资料\libsvm-3.24\matlab, 0 , 2019-12-20
资料\libsvm-3.24\matlab\Makefile, 1097 , 2019-09-11
资料\libsvm-3.24\matlab\README, 9634 , 2019-09-11
资料\libsvm-3.24\matlab\libsvmread.c, 4060 , 2019-09-11
资料\libsvm-3.24\matlab\libsvmwrite.c, 2326 , 2019-09-11
资料\libsvm-3.24\matlab\svm_model_matlab.c, 8196 , 2019-09-11
资料\libsvm-3.24\matlab\svm_model_matlab.h, 201 , 2019-09-11
资料\libsvm-3.24\matlab\svmpredict.c, 9827 , 2019-09-11
资料\libsvm-3.24\matlab\svmtrain.c, 11817 , 2019-09-11
资料\libsvm-3.24\matlab数据库, 0 , 2019-12-20
资料\libsvm-3.24\matlab数据库\Untitled.asv, 107 , 2019-11-04
资料\libsvm-3.24\matlab数据库\Untitled.m, 200 , 2019-11-04
资料\libsvm-3.24\matlab数据库\Untitled6.m, 1187 , 2019-11-03
资料\libsvm-3.24\matlab数据库\heart_scale.mat, 28904 , 2019-11-04
资料\libsvm-3.24\matlab数据库\svm_fl.m, 2009 , 2019-11-03
资料\libsvm-3.24\matlab数据库\svm_hg.m, 3500 , 2019-11-03
资料\libsvm-3.24\matlab数据库\svm_model_matlab.c, 8196 , 2019-09-11
资料\libsvm-3.24\matlab数据库\svm_model_matlab.h, 201 , 2019-09-11
资料\libsvm-3.24\matlab数据库\svm_sl.m, 1561 , 2019-11-03
资料\libsvm-3.24\matlab数据库\svm_sl1.m, 1555 , 2019-11-04
资料\libsvm-3.24\matlab数据库\svmpredict.c, 9827 , 2019-09-11
资料\libsvm-3.24\matlab数据库\svmpredict.mexw64, 27136 , 2019-09-11
资料\libsvm-3.24\matlab数据库\svmtrain.c, 11817 , 2019-09-11
资料\libsvm-3.24\matlab数据库\syf.m, 208 , 2019-11-04
资料\libsvm-3.24\matlab数据库\zczc.mat, 7742720 , 2019-11-04
资料\libsvm-3.24\python, 0 , 2019-12-20
资料\libsvm-3.24\python\Makefile, 32 , 2019-09-11
资料\libsvm-3.24\python\README, 15888 , 2019-09-11
资料\libsvm-3.24\python\commonutil.py, 5445 , 2019-09-11
资料\libsvm-3.24\python\svm.py, 13631 , 2019-09-11
资料\libsvm-3.24\python\svmutil.py, 9524 , 2019-09-11
资料\libsvm-3.24\svm-predict.c, 5537 , 2019-09-11
资料\libsvm-3.24\svm-scale.c, 8696 , 2019-09-11
资料\libsvm-3.24\svm-toy, 0 , 2019-12-20
资料\libsvm-3.24\svm-toy\qt, 0 , 2019-12-20
资料\libsvm-3.24\svm-toy\qt\Makefile, 613 , 2019-09-11
资料\libsvm-3.24\svm-toy\qt\svm-toy.cpp, 9722 , 2019-09-11
资料\libsvm-3.24\svm-toy\windows, 0 , 2019-12-20
资料\libsvm-3.24\svm-toy\windows\svm-toy.cpp, 11460 , 2019-09-11
资料\libsvm-3.24\svm-train.c, 8985 , 2019-09-11
资料\libsvm-3.24\svm.cpp, 65136 , 2019-09-11
资料\libsvm-3.24\svm.def, 477 , 2019-09-11
资料\libsvm-3.24\svm.h, 3381 , 2019-09-11
资料\libsvm-3.24\tools, 0 , 2019-12-20
资料\libsvm-3.24\tools\README, 7031 , 2019-09-11
资料\libsvm-3.24\tools\checkdata.py, 2474 , 2019-09-11
资料\libsvm-3.24\tools\easy.py, 2696 , 2019-09-11
资料\libsvm-3.24\tools\grid.py, 15258 , 2019-09-11
资料\libsvm-3.24\tools\subset.py, 3196 , 2019-09-11
资料\libsvm-3.24\windows, 0 , 2019-12-20
资料\libsvm-3.24\windows\libsvm.dll, 265216 , 2019-09-11
资料\libsvm-3.24\windows\libsvmread.mexw64, 12800 , 2019-09-11
资料\libsvm-3.24\windows\libsvmwrite.mexw64, 12288 , 2019-09-11
资料\libsvm-3.24\windows\svm-predict.exe, 229888 , 2019-09-11
资料\libsvm-3.24\windows\svm-scale.exe, 169984 , 2019-09-11
资料\libsvm-3.24\windows\svm-toy.exe, 230912 , 2019-09-11
资料\libsvm-3.24\windows\svm-train.exe, 255488 , 2019-09-11
资料\libsvm-3.24\windows\svmpredict.mexw64, 27136 , 2019-09-11
资料\libsvm-3.24\windows\svmtrain.mexw64, 69120 , 2019-09-11
资料\libsvm-3.24\windows\新建文件夹, 0 , 2019-12-22
资料\libsvm-3.24\zczc.mat, 7742720 , 2019-11-04
资料\libsvm-3.24\数据集, 0 , 2019-12-20
资料\libsvm-3.24\数据集\forest.mat, 1338 , 2019-11-03
资料\libsvm-3.24\数据集\labelset.mat, 184 , 2019-11-03
资料\svm_12_17_1.m, 1377 , 2019-12-20

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • gasi
    高斯积分matlab实现的介绍以及其源码(Gaussian integral matlab introduction to achieve, as well as its source)
    2007-12-27 00:47:51下载
    积分:1
  • r-lda
    Matlab source codes for the regularized linear discriminant analysis (R-LDA),Author: Lu Juwei,Bell Canada Multimedia Lab, Dept. of ECE, U. of Toronto,Released in 01 November 2004 (Matlab source codes for the regularized linear discriminant analysis (R-LDA), Author: Lu Juwei, Bell Canada Multimedia Lab, Dept. Of ECE, U. of Toronto, Released in 01 November 2004)
    2008-08-12 17:42:48下载
    积分:1
  • CODE
    THIS CODE REPRESENTS THE COMMUNICATION LATENCY OF NETWORKS
    2013-03-17 12:46:01下载
    积分:1
  • Image20160331Quality
    测试以下图像信息 1。结构内容(SC) 2。均方误差(MSE) 3。峰值信噪比(PSNR值) 4。归一化互相关(NCC) 5。平均差(AD) 6。最大的差异(MD) 7。归一化绝对误差(NAE)(Image/Picture Quality Measures In this application, different image quality measures are calculated for a distorted image with reference to an original image. To test the application, a set of 20 distorted images is included in this package. The list of Image Quality measures implemented in this package include, 1. Structural Content (SC) 2. Mean Square Error (MSE) 3. Peak Signal to Noise Ratio (PSNR in dB) 4. Normalized Cross-Correlation (NCC) 5. Average Difference (AD) 6. Maximum Difference (MD) 7. Normalized Absolute Error (NAE) Refer Reference.png for the mathematical expressions implemented in this package. Original images are kept in the folder OriginalImages . Distorted images are kept in the folder DistortedImages .)
    2016-03-31 08:54:35下载
    积分:1
  • fit_mix_gaussian
    fit_mix_gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm format: [u,sig,t,iter] = fit_mix_gaussian( X,M ) input: X - input samples, Nx1 vector M - number of gaussians which are assumed to compose the distribution output: u - fitted mean for each gaussian sig - fitted standard deviation for each gaussian t - probability of each gaussian in the complete distribution iter- number of iterations done by the function
    2011-02-09 19:05:43下载
    积分:1
  • music@mdl
    说明:  music高阶谱分析算法研究,同时还包括信号维数的估计,即mdl准则的研究(high-end music spectrum analysis algorithm, but also including the signal dimension is estimated that the study criteria mdl)
    2006-04-25 22:02:56下载
    积分:1
  • evzedcnz
    利用自然梯度算法,构成不同频率的调制信号,包含位置式PID算法、积分分离式PID,一些自适应信号处理的算法,包括最小二乘法、SVM、神经网络、1_k近邻法,使用起来非常方便,合成孔径雷达(SAR)目标成像仿真。( Use of natural gradient algorithm, Constituting the modulated signals of different frequencies, It contains positional PID algorithm, integral separate PID, Some adaptive signal processing algorithms, Including the least squares method, the SVM, neural networks, 1 _k neighbor method, Very convenient to use, Synthetic Aperture Radar (SAR) imaging simulation target.)
    2016-03-30 20:15:51下载
    积分:1
  • Patton_copula_toolbox
    说明:  利用DACE工具箱中高斯过程做全局优化,适用于复杂非线性模型(Surrogate model optimization algorithm for computationally expensive global optimization problems)
    2019-11-08 15:42:16下载
    积分:1
  • discrisnoise
    用窗去除噪声,达到良好的去噪效果.通过不同窗的比较,得到满意的效果。(to discris the noise by a window)
    2010-07-18 21:40:44下载
    积分:1
  • Scale-free-network
    Albert-László Barabási与Réka Albert在1999年的论文中提出了一个模型来解释复杂网络的无标度特性,称为BA模型。这个模型基于两个假设: 增长模式:不少现实网络是不断扩大不断增长而来的,例如互联网中新网页的诞生,人际网络中新朋友的加入,新的论文的发表,航空网络中新机场的建造等等。 优先连接模式:新的节点在加入时会倾向于与有更多连接的节点相连,例如新网页一般会有到知名的网络站点的连接,新加入社群的人会想与社群中的知名人士结识,新的论文倾向于引用已被广泛引用的著名文献,新机场会优先考虑建立与大机场之间的航线等等。 (Albert-László Barabási with Réka Albert in the 1999 paper proposed a model to explain the complex networks of scale-free property, known as the BA model. This model is based on two assumptions: Growth pattern: a lot of real network is expanding growing from, for example, the birth of the Internet BEIJING, page, new friends to join the network of people, a new paper published aviation network in the new airport construction and so on. Priority connection mode: a new node upon accession will tend to connect to the node connected to, for example, a new page will generally have a connection to the well-known networking sites, and the new Community will want with the community s well-known get to know the new paper preference is to use well-known literature has been widely cited, the new airport will give priority to create and airport routes.)
    2013-05-08 13:00:12下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载