登录
首页 » matlab » LS_SVM

LS_SVM

于 2020-01-16 发布
0 181
下载积分: 1 下载次数: 1

代码说明:

说明:  在LS-SVM的基础上进行优化求解,速度更快更优。(On the basis of LS-SVM, the optimization solution is faster and better.)

文件列表:

Cu模型训练2.txt, 3079 , 2013-09-26
danFD_LSSVM.m, 1337 , 2013-05-31
lssvm_example.m, 1688 , 2013-01-07
lssvm_test.m, 6666 , 2013-09-26
LSSVMlabv1_8_R2006a_R2009a, 0 , 2015-09-26
LSSVMlabv1_8_R2006a_R2009a\AFEm.m, 3453 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\bay_errorbar.m, 5785 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\bay_initlssvm.m, 2003 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\bay_lssvm.m, 10345 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\bay_lssvmARD.m, 8187 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\bay_modoutClass.m, 9358 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\bay_optimize.m, 5844 , 2011-07-06
LSSVMlabv1_8_R2006a_R2009a\bay_rr.m, 4312 , 2009-10-27
LSSVMlabv1_8_R2006a_R2009a\bitreverse32.m, 1479 , 2010-10-18
LSSVMlabv1_8_R2006a_R2009a\changelssvm.m, 5576 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\cilssvm.m, 4751 , 2011-08-11
LSSVMlabv1_8_R2006a_R2009a\code.m, 4245 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\code_ECOC.m, 5197 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\code_MOC.m, 550 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\code_OneVsAll.m, 364 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\code_OneVsOne.m, 579 , 2009-11-26
LSSVMlabv1_8_R2006a_R2009a\codedist_bay.m, 2118 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\codedist_hamming.m, 756 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\codedist_loss.m, 2018 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\codelssvm.m, 4126 , 2009-11-26
LSSVMlabv1_8_R2006a_R2009a\crossvalidate.m, 5822 , 2011-08-15
LSSVMlabv1_8_R2006a_R2009a\crossvalidatelssvm.m, 3958 , 2011-08-15
LSSVMlabv1_8_R2006a_R2009a\csa.m, 3188 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\demo_fixedclass.m, 2251 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\demo_fixedsize.m, 3233 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\demo_yinyang.m, 3447 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\democlass.m, 3461 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\democonfint.m, 2147 , 2011-07-29
LSSVMlabv1_8_R2006a_R2009a\demofun.m, 3972 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\demomodel.m, 4772 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\demomulticlass.m, 2299 , 2010-09-15
LSSVMlabv1_8_R2006a_R2009a\denoise_kpca.m, 3598 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\eign.m, 3787 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\gcrossvalidate.m, 3302 , 2010-08-18
LSSVMlabv1_8_R2006a_R2009a\gcrossvalidatelssvm.m, 2092 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\gridsearch.m, 6927 , 2009-02-12
LSSVMlabv1_8_R2006a_R2009a\initlssvm.m, 3327 , 2010-09-16
LSSVMlabv1_8_R2006a_R2009a\kentropy.m, 2206 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\kernel_matrix.m, 3569 , 2011-08-11
LSSVMlabv1_8_R2006a_R2009a\kernel_matrix2.m, 795 , 2011-08-11
LSSVMlabv1_8_R2006a_R2009a\kpca.m, 6137 , 2010-06-08
LSSVMlabv1_8_R2006a_R2009a\latentlssvm.m, 2398 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\latticeseq_b2.m, 5836 , 2010-10-18
LSSVMlabv1_8_R2006a_R2009a\leaveoneout.m, 3667 , 2010-09-15
LSSVMlabv1_8_R2006a_R2009a\leaveoneoutlssvm.m, 2408 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\lin_kernel.m, 531 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\linesearch.m, 3758 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\linf.m, 313 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\lssvm.m, 1762 , 2010-09-15
LSSVMlabv1_8_R2006a_R2009a\lssvmMATLAB.m, 2082 , 2010-01-13
LSSVMlabv1_8_R2006a_R2009a\mae.m, 281 , 2011-07-26
LSSVMlabv1_8_R2006a_R2009a\medae.m, 311 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\misclass.m, 693 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\MLP_kernel.m, 608 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\mse.m, 285 , 2010-09-06
LSSVMlabv1_8_R2006a_R2009a\plotlssvm.m, 9963 , 2010-09-20
LSSVMlabv1_8_R2006a_R2009a\poly_kernel.m, 623 , 2010-06-08
LSSVMlabv1_8_R2006a_R2009a\postlssvm.m, 4838 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\predict.m, 3485 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\predlssvm.m, 5303 , 2011-02-07
LSSVMlabv1_8_R2006a_R2009a\preimage_rbf.m, 4452 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\prelssvm.m, 6319 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\progress.m, 1148 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\range.m, 173 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\RBF_kernel.m, 1105 , 2010-05-11
LSSVMlabv1_8_R2006a_R2009a\rcrossvalidate.m, 5945 , 2010-09-16
LSSVMlabv1_8_R2006a_R2009a\rcrossvalidatelssvm.m, 4155 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\ridgeregress.m, 1436 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\ripley.mat, 4100 , 2010-04-28
LSSVMlabv1_8_R2006a_R2009a\robustlssvm.m, 2145 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\roc.m, 7496 , 2010-09-15
LSSVMlabv1_8_R2006a_R2009a\rsimplex.m, 9916 , 2011-02-07
LSSVMlabv1_8_R2006a_R2009a\simann.m, 5845 , 2010-09-20
LSSVMlabv1_8_R2006a_R2009a\simlssvm.m, 6421 , 2010-09-20
LSSVMlabv1_8_R2006a_R2009a\simplex.m, 9816 , 2011-02-07
LSSVMlabv1_8_R2006a_R2009a\smootherlssvm.m, 1142 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\tbform.m, 3210 , 2011-02-07
LSSVMlabv1_8_R2006a_R2009a\trainlssvm.m, 8705 , 2011-02-07
LSSVMlabv1_8_R2006a_R2009a\trimmedmse.m, 1711 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\tunelssvm.m, 22683 , 2011-06-29
LSSVMlabv1_8_R2006a_R2009a\weightingscheme.m, 794 , 2010-09-15
LSSVMlabv1_8_R2006a_R2009a\windowize.m, 1937 , 2003-02-21
LSSVMlabv1_8_R2006a_R2009a\windowizeNARX.m, 1832 , 2003-02-21
lssvm参数优化例子.docx, 45805 , 2013-01-30
LSSVM多输入单输出例子.docx, 14361 , 2013-01-04
lssvm工具箱的安装.docx, 14488 , 2013-01-07
LSSVM文献, 0 , 2015-09-26
LSSVM文献\LS SVM用户指南.pdf, 2229390 , 2013-01-04
LSSVM文献\SVM与LSSVM.ppt, 127488 , 2012-12-26
LSSVM文献\多因变量LSSVM回归算法及其在近红外光谱定量分析中的应用.pdf, 343992 , 2013-03-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Wavelet_Base_Image_Compression_implementation_usin
    利用Matlab实现的基于小波SOFM的图像压缩算法,在matlab网站下载的,应该具有比较高的参考价值(The use of Matlab to achieve SOFM-based wavelet image compression algorithm, in matlab website, and should have a relatively high reference value)
    2008-04-28 12:57:30下载
    积分:1
  • 2
    输入整数n,显示出具有n行的杨辉三角形。一个具有10行的杨辉三角形运行结果(Enter an integer n, with n rows show the Triangle. Triangle with the results of a 10 line)
    2013-12-15 16:17:20下载
    积分:1
  • Color-gamut-calculation
    根据输入的色坐标自动计算出色域,并标注在CIE-1931色度图上.(Automatically calculate based on the input color coordinates of the gamut, and marked in the CIE-1931 chromaticity diagram.... )
    2012-02-24 12:45:07下载
    积分:1
  • TDLDA
    2维线性判别分析算法,可以应用于人脸识别等图像处理问题中。(2 dimensional LDA algorithm,it can be applied to face recognition and other image processing problems.)
    2013-01-20 12:07:46下载
    积分:1
  • lpr
    说明:  成功实现了车牌的定位、字符分割、并用神经网络实现了字符识别功能。可运行。(The successful implementation of the license plate of the positioning, character segmentation, and neural network achieved a character recognition function. Run.)
    2009-07-22 17:19:58下载
    积分:1
  • VolumeRayCasting_101
    利用raycasting实现三维重建,直接体绘制,老外写的(raycasting volume rendering C++ C# vs2008)
    2019-04-20 08:58:59下载
    积分:1
  • threshold
    python语言,三种阈值分割方式,简单阈值分割,自适应阈值分割,OTsu分割方式(Python language, three methods of image segmentation , simple threshold segmentation, adaptive threshold segmentation, OTsu segmentation)
    2019-04-06 16:08:23下载
    积分:1
  • pca--lle
    通过使用LLE PCA两种方法相结合的思路,提高人脸识别的分别率(LLE PCA by using the idea of combining two methods to improve face recognition rate difference)
    2010-03-05 10:01:47下载
    积分:1
  • BM3D
    说明:  自己实现的BM3D图像去噪算法。它首先把图像分成一定大小的块,根据图像块之间的相似性,把具有相似结构的二维图像块组合在一起形成三维数组,然后用联合滤波的方法对这些三维数组进行处理,最后,通过逆变换,把处理后的结果返回到原图像中,从而得到去噪后的图像。(Image Denosing by Sparse 3-D Transform-Domain Collaborative Filtering.)
    2021-04-01 16:29:08下载
    积分:1
  • SRM
    SRM空间富模型隐写分析算法,选区高维特征,使用集成分类器进行训练(Spatial Rich Model Steganalysis Algorithms, Selection of High-Dimensional Features, Using Integrated Classifier for Training)
    2021-03-30 16:09:09下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载