登录
首页 » matlab » yechengxi-LightNet-6ada9dd

yechengxi-LightNet-6ada9dd

于 2020-01-20 发布
0 179
下载积分: 1 下载次数: 11

代码说明:

说明:  一个matlab神经网络工具箱,其中包含RNN,CNN等(Matlab neural network toolbox)

文件列表:

yechengxi-LightNet-6ada9dd, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CIFAR_CNN_SGD.m, 674 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CNN_ImageNet_minimal.m, 1194 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\PrepareData_CIFAR_CNN.m, 413 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\getCifarImdb.m, 2122 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\net_init_cifar_cnn.m, 1849 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\test_im.JPG, 113805 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\leaky_relu.m, 245 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\modu.m, 310 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\relu.m, 143 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\sigmoid_ln.m, 149 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\tanh_ln.m, 152 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\bnorm.m, 3375 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_1d.m, 5449 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_2d.m, 5367 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\dropout.m, 277 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\linear_layer.m, 2436 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\lrn.m, 2430 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool.m, 3523 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool_1d.m, 2936 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\rmsnorm.m, 2099 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\softmax.m, 254 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss\softmaxlogloss.m, 551 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\Main_Template.m, 3119 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\TrainingScript.m, 3614 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_bp.m, 5983 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_ff.m, 6106 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\test_net.m, 3978 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\train_net.m, 4654 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adagrad.m, 2055 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adam.m, 3192 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\gradient_decorrelation.m, 3624 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\rmsprop.m, 2991 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\select_learning_rate.m, 2321 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\selective_sgd.m, 867 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd.m, 2378 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd2.m, 5401 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\SwitchProcessor.m, 565 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\average_gradients_in_frames.m, 942 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\error_multiclass.m, 689 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\flipall.m, 80 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\generate_output_filename.m, 947 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\im2col_ln.m, 1267 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data.m, 866 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data_1d.m, 686 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\unroll_ln.m, 858 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\LightNet Tutorial.pptx, 1285467 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-supplementary-materials.pdf, 172375 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-versatile-standalone.pdf, 373087 , 2017-10-21
yechengxi-LightNet-6ada9dd\ImageNetPreTrain.png, 312780 , 2017-10-21
yechengxi-LightNet-6ada9dd\Init.png, 51249 , 2017-10-21
yechengxi-LightNet-6ada9dd\License.txt, 736 , 2017-10-21
yechengxi-LightNet-6ada9dd\LightNet.png, 84805 , 2017-10-21
yechengxi-LightNet-6ada9dd\Log.txt, 2348 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_Dropout.m, 923 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_RMSPROP.m, 918 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\PrepareData_MNIST_MLP.m, 665 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\get_mnist.m, 1620 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist.m, 967 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist_dropout.m, 1668 , 2017-10-21
yechengxi-LightNet-6ada9dd\README.md, 5613 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\Main_Char_RNN.m, 4440 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_bp.m, 1780 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_ff.m, 2349 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\PrepareData_Char_RNN.m, 561 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\dict.txt, 147 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_x.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_y.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_x.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_y.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_bp.m, 1947 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_ff.m, 2582 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_gru.m, 1228 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_lstm.m, 1351 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_qrnn.m, 1197 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_rnn.m, 877 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_bp.m, 1350 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_ff.m, 1883 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_bp.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_ff.m, 2129 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\test_rnn.m, 1209 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\train_rnn.m, 4898 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Cart_Pole.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Policy_Network.m, 4506 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Q_Network.m, 4754 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\is_valid_state.m, 273 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\net_init_pole.m, 509 , 2017-10-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Hopfield_Example
    Hopfield is one of most famous recurrent Neural Network. here is a sample.
    2010-12-02 20:29:43下载
    积分:1
  • Mos
    this file can help to determin mosfet characterstics
    2011-02-12 19:44:17下载
    积分:1
  • pls
    说明:  pls算法,实现了一个通用的pls算法,可以直接调用。(pls algorithm)
    2010-04-13 10:00:05下载
    积分:1
  • interface-programming-examples
    MATLAB R2008接口技术程序设计实例教程源程序(MATLAB R2008 interface programming examples tutorial source code)
    2013-04-10 11:50:41下载
    积分:1
  • kolmog
    最小平方反褶积是把地震子波压缩成尖脉冲,从而使地震记录能够直接反映地下反射系数序列(Least squares deconvolution of seismic waves are compressed into spikes, which can directly reflect the seismic record subsurface reflection coefficient series)
    2015-01-21 19:50:14下载
    积分:1
  • Alamoutyscheme
    Space time coding - Alamouti scheme(Space time coding- Alamouti scheme)
    2009-05-29 15:20:21下载
    积分:1
  • LMI
    线性矩阵不等式(LMI)的求解例子,最优保成本状态反馈控制、无记忆状态反馈鲁棒H_inf控制器(An example for LMI)
    2013-10-07 17:44:43下载
    积分:1
  • mlsr
    北京大学 流形学习与稀疏表示 课程课件.(包括基本数学工具、黎曼几何、降维方法、稀疏表示等理论和编程方法)(Peking manifold learning courseware and sparse representation. (Including basic mathematical tools, Riemannian, dimension reduction methods, sparse representation theory and programming methods))
    2015-04-13 14:22:33下载
    积分:1
  • Solar_light
    solar based charging program. Automatic on , off control and charging control.
    2014-07-14 19:27:05下载
    积分:1
  • MATLAB-external-program-interface
    MATLAB与外部程序接口的设计与应用,内容比较前面(MATLAB and external program interface design and application, compare the contents of the front)
    2010-11-04 15:40:48下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载