登录
首页 » matlab » yechengxi-LightNet-6ada9dd

yechengxi-LightNet-6ada9dd

于 2020-01-20 发布
0 178
下载积分: 1 下载次数: 11

代码说明:

说明:  一个matlab神经网络工具箱,其中包含RNN,CNN等(Matlab neural network toolbox)

文件列表:

yechengxi-LightNet-6ada9dd, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CIFAR_CNN_SGD.m, 674 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CNN_ImageNet_minimal.m, 1194 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\PrepareData_CIFAR_CNN.m, 413 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\getCifarImdb.m, 2122 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\net_init_cifar_cnn.m, 1849 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\test_im.JPG, 113805 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\leaky_relu.m, 245 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\modu.m, 310 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\relu.m, 143 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\sigmoid_ln.m, 149 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\tanh_ln.m, 152 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\bnorm.m, 3375 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_1d.m, 5449 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_2d.m, 5367 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\dropout.m, 277 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\linear_layer.m, 2436 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\lrn.m, 2430 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool.m, 3523 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool_1d.m, 2936 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\rmsnorm.m, 2099 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\softmax.m, 254 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss\softmaxlogloss.m, 551 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\Main_Template.m, 3119 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\TrainingScript.m, 3614 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_bp.m, 5983 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_ff.m, 6106 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\test_net.m, 3978 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\train_net.m, 4654 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adagrad.m, 2055 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adam.m, 3192 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\gradient_decorrelation.m, 3624 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\rmsprop.m, 2991 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\select_learning_rate.m, 2321 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\selective_sgd.m, 867 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd.m, 2378 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd2.m, 5401 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\SwitchProcessor.m, 565 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\average_gradients_in_frames.m, 942 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\error_multiclass.m, 689 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\flipall.m, 80 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\generate_output_filename.m, 947 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\im2col_ln.m, 1267 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data.m, 866 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data_1d.m, 686 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\unroll_ln.m, 858 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\LightNet Tutorial.pptx, 1285467 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-supplementary-materials.pdf, 172375 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-versatile-standalone.pdf, 373087 , 2017-10-21
yechengxi-LightNet-6ada9dd\ImageNetPreTrain.png, 312780 , 2017-10-21
yechengxi-LightNet-6ada9dd\Init.png, 51249 , 2017-10-21
yechengxi-LightNet-6ada9dd\License.txt, 736 , 2017-10-21
yechengxi-LightNet-6ada9dd\LightNet.png, 84805 , 2017-10-21
yechengxi-LightNet-6ada9dd\Log.txt, 2348 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_Dropout.m, 923 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_RMSPROP.m, 918 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\PrepareData_MNIST_MLP.m, 665 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\get_mnist.m, 1620 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist.m, 967 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist_dropout.m, 1668 , 2017-10-21
yechengxi-LightNet-6ada9dd\README.md, 5613 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\Main_Char_RNN.m, 4440 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_bp.m, 1780 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_ff.m, 2349 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\PrepareData_Char_RNN.m, 561 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\dict.txt, 147 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_x.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_y.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_x.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_y.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_bp.m, 1947 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_ff.m, 2582 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_gru.m, 1228 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_lstm.m, 1351 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_qrnn.m, 1197 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_rnn.m, 877 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_bp.m, 1350 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_ff.m, 1883 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_bp.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_ff.m, 2129 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\test_rnn.m, 1209 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\train_rnn.m, 4898 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Cart_Pole.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Policy_Network.m, 4506 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Q_Network.m, 4754 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\is_valid_state.m, 273 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\net_init_pole.m, 509 , 2017-10-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Constrained_K-means_Clustering_with_Background_Kno
    Constrained K-means Clustering with Background Knowledge算法实现(Constrained K-means Clustering with Background Knowledge algorithm)
    2009-12-17 09:49:35下载
    积分:1
  • dsb
    说明:  基于MATLAB的抑制载波双边带调频仿真(MATLAB-based carrier suppression double sideband modulation simulation)
    2011-04-09 16:36:04下载
    积分:1
  • MKT
    这是Mann-kendall趋势检验和sen斜率估计的matlab实现的源代码,与大家共享!(This is the Mann-kendall trend test and the estimated slope sen achieved Matlab source code and share!)
    2021-03-17 10:29:21下载
    积分:1
  • simulation-of-adaptive-conrol
    simulation of adaptive conrol
    2013-05-27 02:42:51下载
    积分:1
  • jingxijifen
    精细积分法计算地震动时程, 使用精细积分法计算Elcentro南北分量地震动八层框架结构时程(Precise integration method)
    2021-04-12 11:38:57下载
    积分:1
  • white
    400-700nm波段白光既自然光的杨氏双缝干涉仿真(Young s Double Slit Interference Simulation of White Light in 400nm-700nm Band)
    2021-04-08 16:49:01下载
    积分:1
  • lsqlin
    说明:  用C++实现了最小二乘法,和matlab的同名函数功能 相同(Code to dispaly how to implement lsqlin function in C++)
    2021-02-13 11:09:49下载
    积分:1
  • 数值计算方法源
    说明:  l雷诺方程离散求解的基本思路以及程序编写思路(The finite difference method of Reynolds equation and the realization of related programs)
    2020-11-11 11:02:40下载
    积分:1
  • Full_Search_AVI[1]
    说明:  该程序用全搜索法实现图像间的匹配,同时有视频foreman作为处理的考虑视频(The program uses the full search method to achieve matching between images, while there is a deal considering Video foreman video)
    2010-04-11 10:58:19下载
    积分:1
  • qshiftgen
    关于复数小波的matlab代码,用于图像去噪、图像增强等(of Complex Wavelet the Matlab code for Image Denoising, image enhancement, etc.)
    2007-03-08 17:18:55下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载