登录
首页 » matlab » yechengxi-LightNet-6ada9dd

yechengxi-LightNet-6ada9dd

于 2020-01-20 发布
0 161
下载积分: 1 下载次数: 11

代码说明:

说明:  一个matlab神经网络工具箱,其中包含RNN,CNN等(Matlab neural network toolbox)

文件列表:

yechengxi-LightNet-6ada9dd, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CIFAR_CNN_SGD.m, 674 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CNN_ImageNet_minimal.m, 1194 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\PrepareData_CIFAR_CNN.m, 413 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\getCifarImdb.m, 2122 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\net_init_cifar_cnn.m, 1849 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\test_im.JPG, 113805 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\leaky_relu.m, 245 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\modu.m, 310 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\relu.m, 143 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\sigmoid_ln.m, 149 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\tanh_ln.m, 152 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\bnorm.m, 3375 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_1d.m, 5449 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_2d.m, 5367 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\dropout.m, 277 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\linear_layer.m, 2436 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\lrn.m, 2430 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool.m, 3523 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool_1d.m, 2936 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\rmsnorm.m, 2099 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\softmax.m, 254 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss\softmaxlogloss.m, 551 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\Main_Template.m, 3119 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\TrainingScript.m, 3614 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_bp.m, 5983 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_ff.m, 6106 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\test_net.m, 3978 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\train_net.m, 4654 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adagrad.m, 2055 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adam.m, 3192 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\gradient_decorrelation.m, 3624 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\rmsprop.m, 2991 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\select_learning_rate.m, 2321 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\selective_sgd.m, 867 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd.m, 2378 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd2.m, 5401 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\SwitchProcessor.m, 565 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\average_gradients_in_frames.m, 942 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\error_multiclass.m, 689 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\flipall.m, 80 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\generate_output_filename.m, 947 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\im2col_ln.m, 1267 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data.m, 866 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data_1d.m, 686 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\unroll_ln.m, 858 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\LightNet Tutorial.pptx, 1285467 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-supplementary-materials.pdf, 172375 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-versatile-standalone.pdf, 373087 , 2017-10-21
yechengxi-LightNet-6ada9dd\ImageNetPreTrain.png, 312780 , 2017-10-21
yechengxi-LightNet-6ada9dd\Init.png, 51249 , 2017-10-21
yechengxi-LightNet-6ada9dd\License.txt, 736 , 2017-10-21
yechengxi-LightNet-6ada9dd\LightNet.png, 84805 , 2017-10-21
yechengxi-LightNet-6ada9dd\Log.txt, 2348 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_Dropout.m, 923 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_RMSPROP.m, 918 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\PrepareData_MNIST_MLP.m, 665 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\get_mnist.m, 1620 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist.m, 967 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist_dropout.m, 1668 , 2017-10-21
yechengxi-LightNet-6ada9dd\README.md, 5613 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\Main_Char_RNN.m, 4440 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_bp.m, 1780 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_ff.m, 2349 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\PrepareData_Char_RNN.m, 561 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\dict.txt, 147 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_x.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_y.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_x.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_y.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_bp.m, 1947 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_ff.m, 2582 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_gru.m, 1228 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_lstm.m, 1351 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_qrnn.m, 1197 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_rnn.m, 877 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_bp.m, 1350 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_ff.m, 1883 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_bp.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_ff.m, 2129 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\test_rnn.m, 1209 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\train_rnn.m, 4898 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Cart_Pole.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Policy_Network.m, 4506 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Q_Network.m, 4754 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\is_valid_state.m, 273 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\net_init_pole.m, 509 , 2017-10-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • aCM_HJY_100veh_addcontrol_120726_sim
    基于微观交通流建模中运用车辆跟驰模型方法 进行仿真(Simulation based on microscopic traffic flow modeling in the use of car-following model method)
    2013-03-30 16:45:27下载
    积分:1
  • droop_control
    第二种孤岛运行的控制是采用下垂控制(droop控制),Droop控制就是用来模拟频率一次调整。通过控制电力电子逆变器来实现。(The second kind of island operation control is droop control, Droop control is used to simulate a frequency adjustment. It is realized by controlling the power electronic inverters.)
    2021-02-05 22:19:57下载
    积分:1
  • matlab-picture
    MATLAB图形技术——绘图及图形用户接口(MATLAB graphics- graphics and graphical user interfaces)
    2013-10-19 21:02:51下载
    积分:1
  • scfdma_simulation_matlab
    Matlab code for the SCFDMA simulation for ber computation and capicty...
    2010-11-25 21:24:36下载
    积分:1
  • heat
    solving the heat equation
    2010-12-03 21:18:22下载
    积分:1
  • LMS
    LMS filter to solve the system identification problem
    2014-12-04 08:22:35下载
    积分:1
  • Transposition_cipher
    TRANSPOSITION_CIPHER.ZIP
    2012-03-24 20:00:53下载
    积分:1
  • matlab-process
    包含大量matlab资料,包括重难点解释和实例、各种函数用法(Contains a large matlab materials, including heavy and difficult explanations and examples of usage of various functions)
    2013-11-07 21:32:03下载
    积分:1
  • zellip
    归一化椭圆函数低通滤波器零极点计算程序 自动优化 zellip 主程序(zellip main program)
    2015-01-25 09:46:33下载
    积分:1
  • Calc_Azimuth_Elevation
    matlab source code from mathworks
    2009-03-28 22:24:03下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载