登录
首页 » matlab » yechengxi-LightNet-6ada9dd

yechengxi-LightNet-6ada9dd

于 2020-01-20 发布
0 169
下载积分: 1 下载次数: 11

代码说明:

说明:  一个matlab神经网络工具箱,其中包含RNN,CNN等(Matlab neural network toolbox)

文件列表:

yechengxi-LightNet-6ada9dd, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CIFAR_CNN_SGD.m, 674 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CNN_ImageNet_minimal.m, 1194 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\PrepareData_CIFAR_CNN.m, 413 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\getCifarImdb.m, 2122 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\net_init_cifar_cnn.m, 1849 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\test_im.JPG, 113805 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\leaky_relu.m, 245 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\modu.m, 310 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\relu.m, 143 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\sigmoid_ln.m, 149 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\tanh_ln.m, 152 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\bnorm.m, 3375 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_1d.m, 5449 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_2d.m, 5367 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\dropout.m, 277 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\linear_layer.m, 2436 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\lrn.m, 2430 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool.m, 3523 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool_1d.m, 2936 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\rmsnorm.m, 2099 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\softmax.m, 254 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss\softmaxlogloss.m, 551 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\Main_Template.m, 3119 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\TrainingScript.m, 3614 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_bp.m, 5983 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_ff.m, 6106 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\test_net.m, 3978 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\train_net.m, 4654 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adagrad.m, 2055 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adam.m, 3192 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\gradient_decorrelation.m, 3624 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\rmsprop.m, 2991 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\select_learning_rate.m, 2321 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\selective_sgd.m, 867 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd.m, 2378 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd2.m, 5401 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\SwitchProcessor.m, 565 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\average_gradients_in_frames.m, 942 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\error_multiclass.m, 689 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\flipall.m, 80 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\generate_output_filename.m, 947 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\im2col_ln.m, 1267 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data.m, 866 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data_1d.m, 686 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\unroll_ln.m, 858 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\LightNet Tutorial.pptx, 1285467 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-supplementary-materials.pdf, 172375 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-versatile-standalone.pdf, 373087 , 2017-10-21
yechengxi-LightNet-6ada9dd\ImageNetPreTrain.png, 312780 , 2017-10-21
yechengxi-LightNet-6ada9dd\Init.png, 51249 , 2017-10-21
yechengxi-LightNet-6ada9dd\License.txt, 736 , 2017-10-21
yechengxi-LightNet-6ada9dd\LightNet.png, 84805 , 2017-10-21
yechengxi-LightNet-6ada9dd\Log.txt, 2348 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_Dropout.m, 923 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_RMSPROP.m, 918 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\PrepareData_MNIST_MLP.m, 665 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\get_mnist.m, 1620 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist.m, 967 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist_dropout.m, 1668 , 2017-10-21
yechengxi-LightNet-6ada9dd\README.md, 5613 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\Main_Char_RNN.m, 4440 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_bp.m, 1780 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_ff.m, 2349 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\PrepareData_Char_RNN.m, 561 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\dict.txt, 147 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_x.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_y.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_x.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_y.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_bp.m, 1947 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_ff.m, 2582 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_gru.m, 1228 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_lstm.m, 1351 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_qrnn.m, 1197 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_rnn.m, 877 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_bp.m, 1350 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_ff.m, 1883 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_bp.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_ff.m, 2129 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\test_rnn.m, 1209 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\train_rnn.m, 4898 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Cart_Pole.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Policy_Network.m, 4506 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Q_Network.m, 4754 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\is_valid_state.m, 273 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\net_init_pole.m, 509 , 2017-10-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • jacobi
    Use Jacobi algorithm to solve the linear equation
    2009-06-01 18:01:23下载
    积分:1
  • KSVD
    说明:  K-SVD算法程序,利用聚类算法对字典进行训练(K-SVD algorithm program, the use of clustering algorithm is trained on a dictionary)
    2011-02-24 08:07:06下载
    积分:1
  • FinalProject
    Need a CPML MATLAB code. Hi all Is there any body that wrote CPML MALAB code? [66.7 ] Electromagnetic Design and Simulation
    2012-07-12 18:06:45下载
    积分:1
  • simulink
    simulink 使用教程 方便实用 ,详细介绍了控制模型 simulink 的仿真设计(simulink tutorial easy to use and practical, detailed simulation simulink control design model)
    2010-09-15 22:49:29下载
    积分:1
  • Image_stack_viewer
    A good tool to display all kinds of 3D image stacks
    2013-01-03 03:00:52下载
    积分:1
  • ifiss3.1
    不可压缩流体的有限元快速迭代求解,是书籍的附带源代码实现(Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics)
    2013-04-05 23:06:13下载
    积分:1
  • realTimeRecord
    This Matlab-code is a demo for real-time audio and image processing.
    2008-04-28 13:19:41下载
    积分:1
  • NR
    说明:  pq分解法解电力系统潮流程序,不包含算列,用ieee节点信息(pq decouple)
    2011-04-07 20:53:23下载
    积分:1
  • dct
    DCT图像压缩算法。1.图象进行归一化 2.显示系数图象 3.重构及显示图象 4.显示误差图象 5.计算归一化图象的均方误差 (DCT image compression algorithm. 1. Images were normalized 2. Shows coefficient image 3. Reconstruction and display of images 4. Show the error images 5. Calculated normalized mean square error of image)
    2010-06-02 11:30:28下载
    积分:1
  • bias-corrector
    this code correct bias of MR images
    2014-09-02 03:43:43下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载