登录
首页 » matlab » MATLAB_SAR-master

MATLAB_SAR-master

于 2021-04-20 发布
0 250
下载积分: 1 下载次数: 2

代码说明:

说明:  MATLAB SAR工具箱是一个基本的MATLAB库,用于使用NGA[SICD]格式读取、写入、显示和简单处理复杂的合成孔径雷达数据。NGA已经发布了这一标准,以鼓励在整个国际SAR界使用SAR数据标准。Matlab SAR工具箱补充了[六库],它们以其他语言实现,但具有相似的目标。(The MATLAB SAR Toolbox is a basic MATLAB library to read, write, display, and do simple processing of complex SAR data using the NGA [SICD] format. It has been released by NGA to encourage the use of SAR data standards throughout the international SAR community. The MATLAB SAR Toolbox complements the [SIX library], which are implemented in other languages but have similar goals.)

文件列表:

MATLAB_SAR-master, 0 , 2020-02-29
MATLAB_SAR-master\.gitignore, 517 , 2020-02-29
MATLAB_SAR-master\.gitmodules, 132 , 2020-02-29
MATLAB_SAR-master\Geometry, 0 , 2020-02-29
MATLAB_SAR-master\Geometry\ComputeAz.m, 6238 , 2020-02-29
MATLAB_SAR-master\Geometry\DEM, 0 , 2020-02-29
MATLAB_SAR-master\Geometry\DEM\geoid_undulation.m, 6119 , 2020-02-29
MATLAB_SAR-master\Geometry\DEM\geoid_undulation_test_driver.m, 2492 , 2020-02-29
MATLAB_SAR-master\Geometry\DEM\get_DEM_heights_region.m, 4639 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections, 0 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\coa_projection_set.m, 10089 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_ground_to_slant.m, 1110 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_image_to_ground.m, 8906 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_scene_to_image.m, 7202 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_slant_to_ground.m, 1053 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_to_DEM.m, 6171 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_to_ground_plane.m, 3079 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_to_hae.m, 3087 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\point_to_hae_newton.m, 4155 , 2020-02-29
MATLAB_SAR-master\Geometry\Projections\project_image.m, 1659 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates, 0 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ecf_ned_rot_mat.m, 929 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ecf_to_geocentric.m, 1987 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ecf_to_geodetic.m, 3196 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ecf_to_ned.m, 1139 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\geodetic_to_ecf.m, 2136 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\latlonnum.m, 1961 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\latlonstr.m, 5051 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\latlonvec.m, 1257 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ned_to_ecf.m, 1144 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\pcs_to_ecf.m, 1980 , 2020-02-29
MATLAB_SAR-master\Geometry\coordinates\ric_ecf_mat.m, 856 , 2020-02-29
MATLAB_SAR-master\Geometry\vect2geom.m, 3412 , 2020-02-29
MATLAB_SAR-master\Geometry\wgs_84_norm.m, 1726 , 2020-02-29
MATLAB_SAR-master\IO, 0 , 2020-02-29
MATLAB_SAR-master\IO\DTED, 0 , 2020-02-29
MATLAB_SAR-master\IO\DTED\read_DTED.m, 8863 , 2020-02-29
MATLAB_SAR-master\IO\complex, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\convert_complex_data.m, 6473 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar\cosar_valid_data.m, 2899 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar\open_cos_reader.m, 2442 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar\open_cos_reader_noxml.m, 1158 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar\read_cos.m, 2347 , 2020-02-29
MATLAB_SAR-master\IO\complex\cosar\read_cos_meta.m, 3043 , 2020-02-29
MATLAB_SAR-master\IO\complex\csm, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\csm\csmmeta.m, 1859 , 2020-02-29
MATLAB_SAR-master\IO\complex\csm\meta2sicd_csm.m, 25670 , 2020-02-29
MATLAB_SAR-master\IO\complex\csm\open_csm_reader.m, 3227 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\guess_complex_format.m, 1614 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\iscnitf.m, 757 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\iscos.m, 526 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\iscsm.m, 1017 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\isgff.m, 513 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\isinmem.m, 895 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\ismbw.m, 661 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\ispalsar2.m, 2047 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\isrcmmanifest.m, 1604 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\isrs.m, 1886 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\issentinel1slc.m, 2668 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\issicd.m, 942 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\issicd01.m, 528 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\issio.m, 825 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\istiff.m, 709 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\istsx.m, 688 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\private, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\formatTest\private\mightbexml.m, 962 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@FlatfileImageWriter, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@FlatfileImageWriter\FlatfileImageWriter.m, 4972 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@FlatfileImageWriter\write_chip.m, 3834 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@SARImageWriter, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@SARImageWriter\SARImageWriter.m, 1757 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\@SARImageWriter\fseek.m, 1947 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\ImageAdapterWrapper, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\ImageAdapterWrapper\ComplexSarRemapAdapter.m, 5293 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\check_chipper_args.m, 1224 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\chipfun2readerobj.m, 5136 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\generic_chipper.m, 4444 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\mdatatypeprops.m, 1215 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\open_generic_reader.m, 1133 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\open_inmem_reader.m, 1634 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\open_mbw_reader.m, 1041 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\open_reader.m, 2139 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\open_stacked_set.m, 995 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\read_bib.m, 7215 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\read_bip.m, 5475 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\read_bip_mm.m, 2357 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\read_complex.m, 2766 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\reorient_chipper_args.m, 2476 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\reorient_chipper_data.m, 2183 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\setstructfields.m, 1276 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\stack_readers.m, 1170 , 2020-02-29
MATLAB_SAR-master\IO\complex\generic\subset_reader.m, 1438 , 2020-02-29
MATLAB_SAR-master\IO\complex\gff, 0 , 2020-02-29
MATLAB_SAR-master\IO\complex\gff\meta2sicd_gff.m, 3158 , 2020-02-29
MATLAB_SAR-master\IO\complex\gff\open_gff_reader.m, 1612 , 2020-02-29
MATLAB_SAR-master\IO\complex\gff\read_gff.m, 3290 , 2020-02-29
MATLAB_SAR-master\IO\complex\gff\read_gff_meta.m, 18177 , 2020-02-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • fir5116
    16阶带通fir滤波器程序,处理加有白噪声的线性变频信号程序(16-order band-pass filter fir procedures to deal with white noise plus a linear frequency signal process)
    2009-05-12 09:14:42下载
    积分:1
  • pid5
    AN EXCELLENT DC MOTORS SPEED CONTROLLING BY ZIEGLAR NICHOLS PID TUNING
    2010-05-27 01:33:22下载
    积分:1
  • rkf45
    Metodo Runge Kutta per risolvere ODE
    2011-12-18 21:54:05下载
    积分:1
  • matlab
    运用matlab实现了旋转矢量法的仿真,仿真结果表明了算法的有效性(Using matlab to achieve a rotation vector method of simulation, simulation results show the effectiveness of the algorithm)
    2010-06-11 17:26:21下载
    积分:1
  • ch4
    MATLAB科学计算与工程分析源代码源程序3(MATLAB scientific computing and engineering analysis of the source code source 3)
    2009-03-24 11:14:25下载
    积分:1
  • DWT_tq
    说明:  基于小波变换自适应水印图像的(提取) matlab编程实现(Adaptive watermarking based on wavelet transform image (extract) matlab programming)
    2011-05-29 00:03:49下载
    积分:1
  • radial-load-flow
    RADIAL DISTRIBUTION LOAD FLOW MATLAB CODE
    2013-10-18 12:35:47下载
    积分:1
  • trackingradar
    target tracking in radar application(in radar target tracking application)
    2007-03-08 13:58:45下载
    积分:1
  • Current-Control-of-BLDC-Drive-for-EV-application
    This topic presents a current blocking strategy of brushless DC (BLDC) motor drive to prolong the capacity voltage of batteries per charge in electric vehicle applications. The BLDC motor employs a simple torque hysteresis control (THC) that can offer a robust control and quick torque dynamic performance. At first, a mathematical modeling of BLDC motor and principle of torque hysteresis control will be described, so that the benefit offered by the proposed current blocking strategy can be highlighted. It can be shown that the current control method naturally provides current limitation, in which the current error (or ripple) is restricted within the pre-defined band-gap furthermore provide current protection. The benefit of proposed current blocking strategy will be highlighted such that it can prevent the current drained from the batteries when the torque demand is released to set to 0 Nm. The control scheme is validated and verified by the simulation and experimental results.
    2020-11-16 18:09:40下载
    积分:1
  • gender
    Photos with people (e.g., family, friends, celebrities, etc.) are the major interest of users. Thus, with the exponentially growing photos, large-scale content-based face image retrieval is an enabling technology for many emerging applications. In this work, we aim to utilize automatically detected human attributes that contain semantic cues of the face photos to improve contentbased face retrieval by constructing semantic codewords for efficient large-scale face retrieval. By leveraging human attributes in a scalable and systematic framework, we propose two orthogonal methods named attribute-enhanced sparse coding and attributeembedded inverted indexing to improve the face retrieval in the offline and online stages. We investigate the effectiveness of different attributes and vital factors essential for face retrieval. Experimenting on two public datasets, the results show that theproposed methods can achieve up to 43.5 relative improvement in MAP compared to the existing methods.
    2013-11-20 00:42:07下载
    积分:1
  • 696518资源总数
  • 106164会员总数
  • 18今日下载