登录
首页 » matlab » 随机森林

随机森林

于 2020-04-03 发布
0 218
下载积分: 1 下载次数: 15

代码说明:

说明:  利用matlab中随机森林工具包数据进行预测(RF toolkit data in matlab was used for prediction)

文件列表:

randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2020-04-03
randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2020-04-03
randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2020-04-03
randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2020-04-03
randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2020-04-03
randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile, 2693 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64, 26624 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64, 43520 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\README.txt, 3128 , 2020-04-03
randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2020-04-03
randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2020-04-03
randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2020-04-03
randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2020-04-03
randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2020-04-03
randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2020-04-03
randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2020-04-03
randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2020-04-03
randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2020-04-03
randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2020-04-03
randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2020-04-03
randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2020-04-03
randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Class_C, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C, 0 , 2020-04-03
randomforest-matlab, 0 , 2020-04-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • NeuralNetwork_RBF_Classification
    说明:  rbf神经网络用于分类的matlab程序,修改数值就可适用(rbf neural network for classification matlab procedures can modify the application of numerical)
    2008-08-29 22:45:23下载
    积分:1
  • fugai
    覆盖程序,相关问题参加粗糙集条件属性约简程序,相关问题参加粗糙集条件属性约简程序,相关问题参加粗糙集(fugai)
    2010-06-01 22:50:31下载
    积分:1
  • SCR_ActiveCrowbar_research
    利用 matlab对风力发电系统中的低电压穿越问题进行仿真,设计了有源Crowbar运行电路系统,较好的实现了低电压穿越功能。(Use matlab for wind power system simulation LVRT issues designed to run Active Crowbar circuit system to achieve a better low voltage ride through capabilities.)
    2020-11-22 18:59:35下载
    积分:1
  • iris-classification-matlab-master
    In this report, we devise a methodology for identifying the species of an iris amongst 3 based on 4 distinctive features. We first cover the constitution of the data set and input patterns. We then determine the layout and structure of the neural network we will use for the classification. We continue by testing the network in real life conditions. We conclude with a review of the methods used, and how they could be improved.
    2014-09-21 00:53:28下载
    积分:1
  • apdijkstra
    adaptive protocol for shortest path.........................
    2013-03-07 22:44:44下载
    积分:1
  • odesbvp
    利用边值问题求解器bvp4c求解常微分方程的数值解(The numerical solution of ordinary differential equations is solved by using the boundary value solver bvp4c)
    2020-07-04 19:20:01下载
    积分:1
  • Desktop
    这是柴油机故障诊断中,对振动信号进行的粒子滤波降噪处理的程序。(This is a diesel engine fault diagnosis procedures, particle filter noise vibration signal processing.)
    2020-07-03 22:00:01下载
    积分:1
  • attachments_2011_12_29
    matlab/dlf(distributed load flow)+ 33_busdistributed system data
    2011-12-30 16:43:28下载
    积分:1
  • ARprediction
    对序列建立AR模型,并以概率形式给出预测数列表达。先进行平稳性检验后求取自相关函数,用Y-W法求取模型参数,并应用FPE准则确定阶数,进行预测后,给出概率表达。(AR model for the sequence established, and the probability forecast given in the form of a list. After a smooth first autocorrelation function test strike strike model parameters YW law and apply the criteria to determine the order of FPE, predict, given the probability of expression.)
    2014-10-23 19:25:58下载
    积分:1
  • adaptive
    a set of m files for fufilling the adaptive filtering.
    2012-05-01 19:33:48下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载