登录
首页 » matlab » 随机森林

随机森林

于 2020-04-03 发布
0 223
下载积分: 1 下载次数: 15

代码说明:

说明:  利用matlab中随机森林工具包数据进行预测(RF toolkit data in matlab was used for prediction)

文件列表:

randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2020-04-03
randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2020-04-03
randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2020-04-03
randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2020-04-03
randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2020-04-03
randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile, 2693 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64, 26624 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64, 43520 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\README.txt, 3128 , 2020-04-03
randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2020-04-03
randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2020-04-03
randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2020-04-03
randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2020-04-03
randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2020-04-03
randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2020-04-03
randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2020-04-03
randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2020-04-03
randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2020-04-03
randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2020-04-03
randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2020-04-03
randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2020-04-03
randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Class_C, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C, 0 , 2020-04-03
randomforest-matlab, 0 , 2020-04-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • gcrf_demo
    This MATLAB code is an example of how to train the GCRF model described in "Learning Gaussian Conditional Random Fields for Low-Level Vision" by M.F. Tappen, C. Liu, E.H. Adelson, and W.T. Freeman in CVPR 2007. If you use this code in your research, please cite this paper
    2007-11-14 22:36:37下载
    积分:1
  • kc_h
    说明:  TDFD,双脊金属加载矩形波导,的基模和第一个高阶模的色散曲线计算,TE模的仿真(TDFD,双脊metal loaded rectangular waveguide, the fundamental mode and first higher order mode dispersion curve calculation, TE-mode simulation)
    2008-11-25 19:18:18下载
    积分:1
  • Sparse_Signal_Representation
    介绍压缩传感理论中要用到的信号的稀疏表征原理(Introduced the theory of compressed sensing to use the sparse representation of signal theory)
    2010-05-19 11:33:12下载
    积分:1
  • modulate_21Mc
    对要发送的序列进行上变频,上变频到21MHz后进行发送。(change the frequence uop to the one that suit for transmission,which here is 21MHz.)
    2009-03-30 12:54:13下载
    积分:1
  • new
    It creates an m-file for a matlab function and populate with a header template describing the purpose of the function, the input and output parameters, and other relevant information. In addition, it inserts information related to the author of the file: username, display name, computer name, windows version, and the time stamp. The command to create a MATLAB function: new myfun It is also possible to append function code at the function m-file creation time as follows: new myfun disp( Hello World! )
    2010-06-11 15:44:52下载
    积分:1
  • Source-Load-Coupling
    含源负载耦合的交叉耦合滤波器综合。其中F_P_E程序是根据零点及回波损耗得到F,P,E. Cal_M是由F,P,E得到耦合矩阵。此程序建议微波滤波器专业人士下载。其他人有兴趣的可以看看(coupling matrix synthesis techniques for source-load coupled microwave filters)
    2021-03-10 10:49:26下载
    积分:1
  • SVPWMAsynchronousMachine
    用svpwm逆变方式来产生交流从而实现异步交流电机调速(With svpwm way to generate AC inverter to achieve asynchronous AC motor speed)
    2013-12-11 18:09:45下载
    积分:1
  • kaleman
    基于卡尔曼滤波的机动目标跟踪VD算法,变维滤波的原理和性能(Based on Kalman Filter VD maneuvering target tracking algorithm, variable dimension filtering principle and performance)
    2021-04-11 13:48:58下载
    积分:1
  • ecg
    对心电信号的QRS波进行前期处理,主要是下载信号和对信号去噪滤波。(Of the QRS wave of ECG to pre-treatment, mainly to download signals and to signal de-noising filter.)
    2009-04-13 12:48:23下载
    积分:1
  • backproj
    BACKPROJ uses the filtered or unfiltered backprojection algorithm to perform the inverse Radon transform. The filter is designed directly in the frequency domain and then multiplied by the FFT of the projections. The projections are zero-padded to a power of 2 before filtering to prevent spatial domain aliasing and to speed up the FFT.
    2010-05-14 20:52:59下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载