登录
首页 » IDL » IDL培训教材[2014]

IDL培训教材[2014]

于 2020-04-25 发布
0 319
下载积分: 1 下载次数: 1

代码说明:

说明:  IDL(Interactive Data Language)交互式数据语言是进行数据分析、可视化表达和应用开发的第四代可视化。 本书包含详细的基础教程,新手适用。(This book is the basic course of IDL. It is comprehensive and suitable for novices.)

文件列表:

IDL培训教材[2014].pdf, 14820301 , 2016-08-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • OptiSystem-Simulate-examples
    Optisystem 模拟实例大全,初学应该不错(Optisystem simulate examples, good for new users)
    2015-05-01 05:53:37下载
    积分:1
  • Ansys材料库(详细力学参数)
    说明:  Ansys材料库(详细力学参数),包含ANSYS库中的所有材料参数,如弹性模量、密度等(Ansys material library (detailed mechanical parameters), including all material parameters in ANSYS library, such as modulus of elasticity, density, etc.)
    2020-06-22 20:20:01下载
    积分:1
  • 4A486FBBd01
    Spatialite helper document that describes steps for developement
    2009-10-09 18:47:29下载
    积分:1
  • Signaux_et_Systemes
    signaux and systems french ppt(signaux and systems)
    2013-12-08 12:57:20下载
    积分:1
  • Fortran
    求解拉伐尔喷管程序,(1)空间离散格式:采用JST 或Roe格式; (2)时间离散格式:显示Runge-Kutta格式; (3)几何参数和入口参数(Solve the laval nozzle procedure)
    2020-07-01 03:00:02下载
    积分:1
  • Julia High performance
    说明:  Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code.
    2020-06-22 22:00:01下载
    积分:1
  • 第二章xml课后习题
    该代码为XML编程与应用教程第二章课后习题实验答案。(The code for XML programming and Application Tutorial second chapter after-school exercise experiment answer.)
    2018-11-13 09:14:39下载
    积分:1
  • lesson2
    说明:  太原理工大学oracle课件第二章。数据库和表的创建(Taiyuan University of oracle courseware Chapter. Creating databases and tables)
    2011-03-19 20:05:15下载
    积分:1
  • 王兆安_谐波抑制与无功功率补偿(第二版)
    说明:  电气自动化,谐波抑制和无功功率补偿原理,静态无功发生器(Principles of electric automation, harmonic suppression and reactive power compensation)
    2020-01-17 19:23:39下载
    积分:1
  • Deep
    说明:  本文提出了一种用于通信系统中无线电信号检测的自动调制识别框架。该框架考虑了深度卷积神经网络(CNN)和长期短期记忆网络(LSTM)。 此外,我们提出了一种预处理信号表示,其组合了调制信号的同相,正交和四阶统计。所提供的数据表示允许我们的CNN和LSTM模型对我们的测试数据集实现8%的改进。(Automatic Modulation Recognition using Deep Learning Architectures, 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC))
    2020-11-12 21:19:44下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载