登录
首页 » Python » Keras-vgg16--Dogs-vs.-Cats-master

Keras-vgg16--Dogs-vs.-Cats-master

于 2020-04-28 发布
0 178
下载积分: 1 下载次数: 4

代码说明:

说明:  VGG16的猫狗大战代码,效果不错,精度可以达到95%以上。(Vgg16 cat and dog battle code, good effect, accuracy can reach more than 95%.)

文件列表:

Keras-vgg16--Dogs-vs.-Cats-master, 0 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\500.csv, 3405 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\README.md, 483 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\predict.py, 1476 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500, 0 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\1.jpg, 24178 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\10.jpg, 22194 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\100.jpg, 25445 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\101.jpg, 2892 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\102.jpg, 23507 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\103.jpg, 23854 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\104.jpg, 30559 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\105.jpg, 20046 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\106.jpg, 29881 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\107.jpg, 9849 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\108.jpg, 15645 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\109.jpg, 27724 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\11.jpg, 14493 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\110.jpg, 49602 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\111.jpg, 28184 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\112.jpg, 7942 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\113.jpg, 14915 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\114.jpg, 23524 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\115.jpg, 21832 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\116.jpg, 17152 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\117.jpg, 12380 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\118.jpg, 41669 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\119.jpg, 22233 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\12.jpg, 31153 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\120.jpg, 15552 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\121.jpg, 21544 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\122.jpg, 28778 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\123.jpg, 13829 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\124.jpg, 11992 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\125.jpg, 23146 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\126.jpg, 6176 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\127.jpg, 28220 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\128.jpg, 10121 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\129.jpg, 13497 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\13.jpg, 27646 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\130.jpg, 11246 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\131.jpg, 38384 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\132.jpg, 14513 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\133.jpg, 12481 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\134.jpg, 27229 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\135.jpg, 24136 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\136.jpg, 31743 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\137.jpg, 3941 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\138.jpg, 16681 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\139.jpg, 30803 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\14.jpg, 16401 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\140.jpg, 20660 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\141.jpg, 25882 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\142.jpg, 14676 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\143.jpg, 36497 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\144.jpg, 29547 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\145.jpg, 43452 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\146.jpg, 51313 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\147.jpg, 22760 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\148.jpg, 29448 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\149.jpg, 18110 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\15.jpg, 32734 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\150.jpg, 12254 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\151.jpg, 6917 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\152.jpg, 27236 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\153.jpg, 12325 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\154.jpg, 17401 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\155.jpg, 31571 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\156.jpg, 24636 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\157.jpg, 27835 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\158.jpg, 33418 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\159.jpg, 20936 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\16.jpg, 16940 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\160.jpg, 26919 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\161.jpg, 16398 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\162.jpg, 15312 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\163.jpg, 14995 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\164.jpg, 16433 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\165.jpg, 18869 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\166.jpg, 19327 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\167.jpg, 22777 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\168.jpg, 16914 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\169.jpg, 14633 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\17.jpg, 15062 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\170.jpg, 33889 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\171.jpg, 26681 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\172.jpg, 27951 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\173.jpg, 12119 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\174.jpg, 15461 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\175.jpg, 16278 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\176.jpg, 54845 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\177.jpg, 27985 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\178.jpg, 35940 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\179.jpg, 26115 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\18.jpg, 34690 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\180.jpg, 32033 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\181.jpg, 36390 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\182.jpg, 22893 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\183.jpg, 20642 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\184.jpg, 9277 , 2019-11-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 一个关于画图的简单的程序,大家随便看看,自己编的
    一个关于画图的简单的程序,大家随便看看,自己编的-A simple drawing program, we just look at the own
    2022-10-15 18:30:02下载
    积分:1
  • 地图数据可视化看板大屏幕模板
    说明:  地图数据可视化看板大屏幕模板,适用于大数据展示(Map data visualization Kanban large screen template)
    2020-04-22 17:03:39下载
    积分:1
  • quartus
    此为quautus教程,请各位仔细去看吧,有不懂的和我联系(This is quautus tutorial, please look at it carefully, and I do not have contact)
    2008-01-31 15:39:00下载
    积分:1
  • 对到位地位的的算法排序
    对到位地位的的算法排序-place on the status of Sort Algorithm
    2022-02-09 13:29:51下载
    积分:1
  • fpag usb blaster document
    fpag usb blaster document
    2023-04-27 16:50:04下载
    积分:1
  • jietun_v68
    利用最小二乘法进行拟合多元非线性方程,数学方法是部分子空间法,空间目标识别,采用PM算法。( Multivariate least squares fitting method of nonlinear equations, Mathematics is part of the subspace, Space target recognition algorithm using PM.)
    2016-11-24 21:31:03下载
    积分:1
  • QPSO
    说明:  量子粒子群优化算法(QPSO)是一种比较新的基于粒子群优化算法的改进算法,虽然它的性能比其他的粒子群算法要好,但还是存在不足。(Quantum particle swarm optimization (QPSO) is a relatively new improved algorithm based on particle swarm optimization. Although its performance is better than other particle swarm optimization algorithms, it still has shortcomings.)
    2019-06-05 21:30:35下载
    积分:1
  • ASTERISK 更新文件 asterisk_update
    ASTERISK 更新文件,有空的可以看看(ASTERISK updates files, you can see when you are free)
    2020-06-20 07:00:01下载
    积分:1
  • serendipity PHP博客系统 v2.3.1
    Serendipity是一款采用PHP编写的智能blog博客系统,基于BSDLicense,代码开源,支持SQLite,PostgreSQL,MySQL,MySQLi多种数据库。serendipity PHP博客系统特点:   内置强大的媒体数据库和WYSIWYG与HTML编辑器;支持Threadedcomment,嵌套分类;多用户,可配置的权限/用户组系统;   Serendipity智能blog博客系统特点:   WYSIWYG与HTML编辑;   内置强大的媒体数据库;   多作者,可配置的权限/用户组系统;   支持Threadedcomment,嵌套分类;   支持多种语言,包括简繁中文;   丰富插件与模板库;   强大的垃圾过滤功能;   能够嵌到现有的Web页面中;   支持XML-RPC;   支持多种数据库SQLite,PostgreSQL,MySQL,MySQLi;   支持从其它Blog系统(WordPress,Textpattern,MoveableType,bblog,...)导入的功能。
    2022-12-16 16:30:04下载
    积分:1
  • 一个表,完全用FLASH制作的,效果非常的好,欢迎大家分享
    一个表,完全用FLASH制作的,效果非常的好,欢迎大家分享-a table entirely with Flash production, the effect was very good, we are happy to share
    2022-07-13 08:47:02下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载