登录
首页 » Python » Keras-vgg16--Dogs-vs.-Cats-master

Keras-vgg16--Dogs-vs.-Cats-master

于 2020-04-28 发布
0 179
下载积分: 1 下载次数: 4

代码说明:

说明:  VGG16的猫狗大战代码,效果不错,精度可以达到95%以上。(Vgg16 cat and dog battle code, good effect, accuracy can reach more than 95%.)

文件列表:

Keras-vgg16--Dogs-vs.-Cats-master, 0 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\500.csv, 3405 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\README.md, 483 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\predict.py, 1476 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500, 0 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\1.jpg, 24178 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\10.jpg, 22194 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\100.jpg, 25445 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\101.jpg, 2892 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\102.jpg, 23507 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\103.jpg, 23854 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\104.jpg, 30559 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\105.jpg, 20046 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\106.jpg, 29881 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\107.jpg, 9849 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\108.jpg, 15645 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\109.jpg, 27724 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\11.jpg, 14493 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\110.jpg, 49602 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\111.jpg, 28184 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\112.jpg, 7942 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\113.jpg, 14915 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\114.jpg, 23524 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\115.jpg, 21832 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\116.jpg, 17152 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\117.jpg, 12380 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\118.jpg, 41669 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\119.jpg, 22233 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\12.jpg, 31153 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\120.jpg, 15552 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\121.jpg, 21544 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\122.jpg, 28778 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\123.jpg, 13829 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\124.jpg, 11992 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\125.jpg, 23146 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\126.jpg, 6176 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\127.jpg, 28220 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\128.jpg, 10121 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\129.jpg, 13497 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\13.jpg, 27646 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\130.jpg, 11246 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\131.jpg, 38384 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\132.jpg, 14513 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\133.jpg, 12481 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\134.jpg, 27229 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\135.jpg, 24136 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\136.jpg, 31743 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\137.jpg, 3941 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\138.jpg, 16681 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\139.jpg, 30803 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\14.jpg, 16401 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\140.jpg, 20660 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\141.jpg, 25882 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\142.jpg, 14676 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\143.jpg, 36497 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\144.jpg, 29547 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\145.jpg, 43452 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\146.jpg, 51313 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\147.jpg, 22760 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\148.jpg, 29448 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\149.jpg, 18110 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\15.jpg, 32734 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\150.jpg, 12254 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\151.jpg, 6917 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\152.jpg, 27236 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\153.jpg, 12325 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\154.jpg, 17401 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\155.jpg, 31571 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\156.jpg, 24636 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\157.jpg, 27835 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\158.jpg, 33418 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\159.jpg, 20936 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\16.jpg, 16940 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\160.jpg, 26919 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\161.jpg, 16398 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\162.jpg, 15312 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\163.jpg, 14995 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\164.jpg, 16433 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\165.jpg, 18869 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\166.jpg, 19327 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\167.jpg, 22777 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\168.jpg, 16914 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\169.jpg, 14633 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\17.jpg, 15062 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\170.jpg, 33889 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\171.jpg, 26681 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\172.jpg, 27951 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\173.jpg, 12119 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\174.jpg, 15461 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\175.jpg, 16278 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\176.jpg, 54845 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\177.jpg, 27985 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\178.jpg, 35940 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\179.jpg, 26115 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\18.jpg, 34690 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\180.jpg, 32033 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\181.jpg, 36390 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\182.jpg, 22893 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\183.jpg, 20642 , 2019-11-07
Keras-vgg16--Dogs-vs.-Cats-master\test500\184.jpg, 9277 , 2019-11-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ISI密钥,
    ISI密钥,-ISI keys
    2022-01-25 22:08:40下载
    积分:1
  • visual basic program design of planetary gear
    visual basic程序实现行星轮设计-visual basic program design of planetary gear
    2022-02-01 17:25:57下载
    积分:1
  • huiseyuce
    本程序是基于灰色预测理论的灰色预测的算法实现(This procedure is based on the gray gray prediction theory prediction algorithm)
    2008-07-28 16:08:55下载
    积分:1
  • irisSOM
    用matlab中som实现的iris分类,包括分类的精确度(Using matlab in som realize the iris classification, including classification accuracy)
    2021-03-16 22:59:21下载
    积分:1
  • mytmradiocorrection
    :IDL ENVI 实现辐射定标和大气校正(IDL ENVI implementation of radiometric calibration and atmospheric correction)
    2018-07-21 15:13:50下载
    积分:1
  • 79952594avr-mdb-interface-master
    mdb using avr developed for usage
    2020-06-16 00:40:01下载
    积分:1
  • ECItoECEF
    类似J2000的ECI坐标系转换到类似wgs84的ECEF坐标系,方便大家应用(Convert ECI (CIS, Epoch J2000.0) Coordinates to WGS 84 (CTS, ECEF) Coordinates. This function has been vectorized for speed. Example Function Call: >> [r_ECEF v_ECEF a_ECEF] = ECItoECEF(JD,r_ECI,v_ECI,a_ECI); Where: JD is the Julian Date vector [1 x N] (units are in days) r_ECI is the position vector [3 x N] (any units are permitted) v_ECI is the velocity vector [3 x N] (any units are permitted) a_ECI is the acceleration vector [3 x N] (any units are permitted))
    2018-03-10 17:33:53下载
    积分:1
  • cellular_automata_test1
    利用matlab编写的元胞自动机模拟火灾人员疏散(Simulation of evacuation of fire personnel by cellular automata compiled by MATLAB)
    2021-04-20 10:58:51下载
    积分:1
  • Auk_sality
    一个非常中西医的程序,大家还是不要下午了我也是为了下载东西啊(goodhhhsjjs hbztsjjs yzushs ztyxud)
    2020-06-18 15:00:01下载
    积分:1
  • 将C语言写的程序代码转换成pascal代码,用过还可以!
    将C语言写的程序代码转换成pascal代码,用过还可以!-to write C-language code into pascal code can be used also.
    2022-06-12 08:31:01下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载