登录
首页 » matlab » reinforcement-learning-master

reinforcement-learning-master

于 2020-05-01 发布
0 148
下载积分: 1 下载次数: 5

代码说明:

说明:  在障碍物环境下的基于强化学习的单智能体与多智能体路径规划算法(Single agent and multi-agent path planning algorithm based on reinforcement learning in obstacle environment)

文件列表:

reinforcement-learning-master, 0 , 2018-06-01
reinforcement-learning-master\.gitattributes, 66 , 2018-06-01
reinforcement-learning-master\MAL, 0 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q, 0 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\LFAEstimator.m, 807 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\MAEnvironment.m, 7602 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\macq.m, 3115 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\maq_iterationCount.mat, 5988 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\maq_reward.mat, 5987 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\weights.mat, 1487 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q, 0 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\LFAEstimator.m, 1003 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\MAEnvironment.m, 7775 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\a1_weights.mat, 536 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\a2_weights.mat, 535 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\mahq.m, 3720 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\maq_iterationCount.mat, 5739 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\maq_reward.mat, 5760 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG, 0 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\MAEnvironment.m, 7775 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\PolicyEstimator.m, 1122 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\ValueEstimator.m, 844 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\agent1_policy_weights.mat, 536 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\agent2_policy_weights.mat, 537 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg.m, 3389 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg_iterationCount.mat, 3556 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg_reward.mat, 3608 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\value_weights.mat, 216 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions, 0 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\clcAngle.m, 463 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\compare_fig.m, 1759 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\ds2nfu.m, 2946 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_epsilon_policy.m, 334 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_greedy_policy.m, 277 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_random_policy.m, 92 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\q_value_or_policy2fig.m, 3218 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\sigmoid.m, 51 , 2018-06-01
reinforcement-learning-master\README.md, 759 , 2018-06-01
reinforcement-learning-master\SAL, 0 , 2018-06-01
reinforcement-learning-master\SAL\01 DP, 0 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PE.m, 522 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PE_V.mat, 5034 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI.m, 2383 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_P.mat, 696 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_P.svg, 56294 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_V.mat, 6922 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_simulationTime.mat, 192 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI.m, 2456 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_P.mat, 361 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_P.svg, 54344 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_Q.mat, 25500 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_Q.svg, 56806 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_V.mat, 4881 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_simulationTime.mat, 192 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\Values.xlsx, 26566 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\policy_evaluation.m, 781 , 2018-06-01
reinforcement-learning-master\SAL\02 MC, 0 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc.m, 4645 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_c.mat, 20341 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_iterationCount.mat, 109202 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_policy.mat, 1317 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_q.mat, 20092 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_reward.mat, 1885 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc.m, 4255 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_iterationCount.mat, 78957 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_policy.mat, 2485 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_q.mat, 27688 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_returns.mat, 36066 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_reward.mat, 1015 , 2018-06-01
reinforcement-learning-master\SAL\03 TD, 0 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning.m, 2976 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_iterationCount.mat, 90583 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_q.mat, 27502 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_reward.mat, 5288 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa.m, 3327 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_iterationCount.mat, 91987 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_q.mat, 27541 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_reward.mat, 1559 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA, 0 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\LFAEstimator.m, 807 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\linear_function_approximation.m, 3454 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_iterationCount.mat, 125625 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_reward.mat, 1702 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_weights.mat, 328 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN, 0 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN.m, 4158 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQNEstimator.m, 3079 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_iterationCount.mat, 23638 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_reward.mat, 2976 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_simulationTime.mat, 241 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_weights.mat, 844598 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\dqn_rwd.png, 9910 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG, 0 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\PolicyEstimator.m, 1135 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\ValueEstimator.m, 844 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\pg_iterationCount.mat, 103307 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\pg_reward.mat, 2130 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\policy_gradient.m, 3366 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\policy_weights.mat, 330 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\value_weights.mat, 211 , 2018-06-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ML-detctior-a-water-pouring
    ML detector water pouring technique used in lte
    2014-01-28 11:08:17下载
    积分:1
  • matlab6.5
    十分有用的matlab参考书 主要关于图像处理方面的
    2009-11-20 14:04:00下载
    积分:1
  • SSC
    Library to use SCC HCC pressure sensors from Honeywell
    2014-02-06 01:07:11下载
    积分:1
  • skzfcpwi
    包括广义互相关函数GCC时延估计,三相光伏逆变并网的仿真,基于kaiser窗的双谱线插值FFT谐波分析,用于信号特征提取、信号消噪,PLS部分最小二乘工具箱,是路径规划的实用方法,构成不同频率的调制信号。( Including the generalized cross-correlation function GCC time delay estimation, Three-phase photovoltaic inverter and network simulation, Dual-line interpolation FFT harmonic analysis kaiser windows, For feature extraction, signal de-noising, PLS PLS toolbox, Is a practical method of path planning, Constituting the modulated signals of different frequencies.)
    2016-04-07 22:55:29下载
    积分:1
  • bp
    说明:  基于MATLAB完成的神经网络源程序,因为此类程序较多,我也分不清是否与现有资源相同(MATLAB based on the completion of the neural network source code, because such procedures more, I also distinguish whether or not the same as with the existing resources)
    2007-10-19 14:03:42下载
    积分:1
  • xiaonaomoxing
    应用batlab编写的小脑模型程序,可逼近任意非线性函数(Application batlab CMAC written procedures, which approximate any nonlinear function)
    2011-08-29 13:36:49下载
    积分:1
  • ee
    快速傅里叶变换 (FFT) 实现,给定信号x(t)=sin(2πf0t),f0=50Hz,对x(t)以fs=200Hz进行抽样,抽样点数为N=16。编写程序实现对x(n)的快速傅里叶变换,求得相应的X(K)。(Fast Fourier Transform (FFT) to achieve a given signal x (t) = sin (2πf0t), f0 = 50Hz, for x (t) with fs = 200Hz sampling, the sampling points is N = 16. Procedures for the preparation of x (n) of the fast Fourier transform, obtained by the corresponding X (K).)
    2013-09-06 19:44:45下载
    积分:1
  • chuanrewenti
    基于四边单元速度传热问题程序,入门程序,简单易懂,适合初学者对该方法编程的一个初步认识(Based on four sides of the unit rate of heat transfer procedures, entry procedures, easy to understand for beginners to the method of programming a preliminary understanding)
    2013-11-13 09:42:34下载
    积分:1
  • power-flow
    网络的三相计算机潮流案例,基于MATLAB 的计算机潮流及其可视化(Three-phase current case computer networks, computer-based trend MATLAB and Visualization)
    2015-05-29 12:57:53下载
    积分:1
  • WidebandNonCoherentSignal
    宽带DOA估计 使用经典的MUSIC算法仿真通过 (wideband direction of arravial use the MUSIC method)
    2020-10-20 23:37:26下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载