登录
首页 » matlab » reinforcement-learning-master

reinforcement-learning-master

于 2020-05-01 发布
0 162
下载积分: 1 下载次数: 5

代码说明:

说明:  在障碍物环境下的基于强化学习的单智能体与多智能体路径规划算法(Single agent and multi-agent path planning algorithm based on reinforcement learning in obstacle environment)

文件列表:

reinforcement-learning-master, 0 , 2018-06-01
reinforcement-learning-master\.gitattributes, 66 , 2018-06-01
reinforcement-learning-master\MAL, 0 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q, 0 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\LFAEstimator.m, 807 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\MAEnvironment.m, 7602 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\macq.m, 3115 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\maq_iterationCount.mat, 5988 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\maq_reward.mat, 5987 , 2018-06-01
reinforcement-learning-master\MAL\01 MA Centralized-Q\weights.mat, 1487 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q, 0 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\LFAEstimator.m, 1003 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\MAEnvironment.m, 7775 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\a1_weights.mat, 536 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\a2_weights.mat, 535 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\mahq.m, 3720 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\maq_iterationCount.mat, 5739 , 2018-06-01
reinforcement-learning-master\MAL\02 MA Hysteretic-Q\maq_reward.mat, 5760 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG, 0 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\MAEnvironment.m, 7775 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\PolicyEstimator.m, 1122 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\ValueEstimator.m, 844 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\agent1_policy_weights.mat, 536 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\agent2_policy_weights.mat, 537 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg.m, 3389 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg_iterationCount.mat, 3556 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\mapg_reward.mat, 3608 , 2018-06-01
reinforcement-learning-master\MAL\03 MAPG\value_weights.mat, 216 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions, 0 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\clcAngle.m, 463 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\compare_fig.m, 1759 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\ds2nfu.m, 2946 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_epsilon_policy.m, 334 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_greedy_policy.m, 277 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\make_random_policy.m, 92 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\q_value_or_policy2fig.m, 3218 , 2018-06-01
reinforcement-learning-master\MAL\Basic Functions\sigmoid.m, 51 , 2018-06-01
reinforcement-learning-master\README.md, 759 , 2018-06-01
reinforcement-learning-master\SAL, 0 , 2018-06-01
reinforcement-learning-master\SAL\01 DP, 0 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PE.m, 522 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PE_V.mat, 5034 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI.m, 2383 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_P.mat, 696 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_P.svg, 56294 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_V.mat, 6922 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\PI_simulationTime.mat, 192 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI.m, 2456 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_P.mat, 361 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_P.svg, 54344 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_Q.mat, 25500 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_Q.svg, 56806 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_V.mat, 4881 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\VI_simulationTime.mat, 192 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\Values.xlsx, 26566 , 2018-06-01
reinforcement-learning-master\SAL\01 DP\policy_evaluation.m, 781 , 2018-06-01
reinforcement-learning-master\SAL\02 MC, 0 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc.m, 4645 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_c.mat, 20341 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_iterationCount.mat, 109202 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_policy.mat, 1317 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_q.mat, 20092 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\offpmc_reward.mat, 1885 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc.m, 4255 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_iterationCount.mat, 78957 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_policy.mat, 2485 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_q.mat, 27688 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_returns.mat, 36066 , 2018-06-01
reinforcement-learning-master\SAL\02 MC\onpmc_reward.mat, 1015 , 2018-06-01
reinforcement-learning-master\SAL\03 TD, 0 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning.m, 2976 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_iterationCount.mat, 90583 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_q.mat, 27502 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\qLearning_reward.mat, 5288 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa.m, 3327 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_iterationCount.mat, 91987 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_q.mat, 27541 , 2018-06-01
reinforcement-learning-master\SAL\03 TD\sarsa_reward.mat, 1559 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA, 0 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\LFAEstimator.m, 807 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\linear_function_approximation.m, 3454 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_iterationCount.mat, 125625 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_reward.mat, 1702 , 2018-06-01
reinforcement-learning-master\SAL\04 LFA\onp_lfa_weights.mat, 328 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN, 0 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN.m, 4158 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQNEstimator.m, 3079 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_iterationCount.mat, 23638 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_reward.mat, 2976 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_simulationTime.mat, 241 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\DQN_weights.mat, 844598 , 2018-06-01
reinforcement-learning-master\SAL\05 DQN\dqn_rwd.png, 9910 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG, 0 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\PolicyEstimator.m, 1135 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\ValueEstimator.m, 844 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\pg_iterationCount.mat, 103307 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\pg_reward.mat, 2130 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\policy_gradient.m, 3366 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\policy_weights.mat, 330 , 2018-06-01
reinforcement-learning-master\SAL\06 LPG\value_weights.mat, 211 , 2018-06-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • trendMK
    用于进行M-K分析代码,用于趋势和突变点寻找检验;编的比较全面,只需要把其中的例子数据换成你所需要分析的数据就行(MK code used for analysis, looking for trends and point mutation test compiled a more comprehensive, just put the data into one of the examples you need to analyze the data on line)
    2011-09-27 12:16:21下载
    积分:1
  • CC_BPSK
    通信系统的仿真,卷积码是纠错码的一种,可以用于数字电视,手机等通信领域,本例子给出了基于matlab的程序,卷积码BPSK调制。(Simulation of communication systems, convolutional code is an error-correcting code can be used for digital television, mobile phones and other communications, the examples given based on the matlab program convolution code BPSK modulation.)
    2011-10-23 18:28:51下载
    积分:1
  • 05
    说明:  matlab编程,很好的学习资料,我看过好几遍了,非常不错。(matlab programming, good learning materials, I have read several times, and very good.)
    2009-10-12 09:42:39下载
    积分:1
  • thecontrolofMATLABSimulink
    《过程控制工程及仿真基于MATLABSimulink》的ppt,非常好的资料(" Process control engineering and simulation-based MATLABSimulink" the ppt, very good information)
    2010-11-16 19:59:37下载
    积分:1
  • opt_matlabGUI
    最优化算法,单纯形法,两阶段法,大M法,单纯形法(两步法)求解任意LP问题的可视化界面(Optimization algorithm, simplex method, two-phase method, Big M method)
    2010-01-12 13:00:49下载
    积分:1
  • 速度调节器
    开关磁阻电动机仿真用的功能控制模块啊啊啊啊啊(shzaibuzhidaoshuodianshaa)
    2019-04-24 12:58:01下载
    积分:1
  • kalman_forward_backward
    Kalman filter expample, kalman_forward_backward
    2010-08-09 16:29:29下载
    积分:1
  • SonnetAntennaDesignV3.2
    Antenna design matlab
    2011-09-11 14:51:03下载
    积分:1
  • f_path
    图论及复杂网络中,Warshall-Floyd算法求解两点间最短路径。(Figure dealt with complex networks, Warshall-Floyd algorithm to solve the shortest path between two points.)
    2011-10-10 16:11:53下载
    积分:1
  • NIBIANFANGZHEN
    说明:  移相全桥matlab,simulink仿真模型,闭环控制,可以正常运行,中心抽头结构(Phase shift full bridge MATLAB, Simulink simulation model, closed-loop control, normal operation, center tap structure)
    2019-11-14 21:40:30下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载