-
uploadpic
关于上传 图片的代码 上传图片的代码(关于上传 图片的代码 上传图片的代码)
- 2013-07-10 11:28:39下载
- 积分:1
-
read_shape
说明: 裁剪shape文件,使用idl编程实现,就是一个功能,编译以后可以直接调用这个函数(Clipping shape file, using idl programming, is a function, after compiling can directly call this function)
- 2019-04-16 17:16:27下载
- 积分:1
-
Accessimage
存取图像字段
数字图像的存取
将图像转化为数字信息(Access image field
)
- 2009-05-21 14:26:40下载
- 积分:1
-
bt656
生成bt656数据格式,针对视频adv7127芯片(Generate bt656 data format,)
- 2017-08-30 18:12:58下载
- 积分:1
-
picOrder
图片排序效果。根据你拖动的位置来进行排序(The picture sort of effect. Depending on where you drag to sort)
- 2013-04-05 12:11:37下载
- 积分:1
-
GraphAlgorithm
C++语言下, 关于图论算法的一些模版, 包括一般图最大匹配, km匹配, 最小割等等, 共15个模版(C++ language under the graph theory algorithm on a number of templates, including the maximum matching in general graph, km matching, minimum cut, etc., a total of 15 templates)
- 2009-05-12 08:28:02下载
- 积分:1
-
图像分割
说明: 图像自适应阈值分割,基于直方图的图像阈值分割(Image adaptive threshold segmentation)
- 2019-01-18 11:37:17下载
- 积分:1
-
gbvs
说明: 用于对图像进行显著性分析,使用GBVS算法,可阅读readme文件进行安装。安装好后直接调用即可。(For image significance analysis, GBVS algorithm, readme file for installation.Directly after the installation can be called.)
- 2020-01-06 17:58:02下载
- 积分:1
-
SFCM
说明: 基于空间信息的模糊均值聚类算法,SFCM,适用于数据分析,图像分割(space fuzzy-c-means clustering algorithm)
- 2021-04-22 21:08:48下载
- 积分:1
-
PCA
主成分分析 ( Principal Component Analysis , PCA )或者主元分析。是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n ′ m 的数据矩阵, n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。(Principal component analysis (Principal Component Analysis, PCA) or PCA. Is a statistical method to grasp the principal contradiction of things, it can be resolved diverse things out the main factors, revealing the essence of things, simplifying complex problems. The purpose of calculating the main component of high-dimensional data is projected to a lower dimensional space. Given n variables of m observations, forming an n ' m of the data matrix, n is usually large. For a complex matters described by several variables, it is difficult to know, so if you can grab something to focus on key aspects of analysis? If the main aspects of things just reflected on several key variables, we only need to separate out these few variables, for detailed analysis. However, in general, does not directly identify this critical variables. Then we can represent the major aspects of things with a linear combination of the original variables, PCA is one such analysis.)
- 2021-01-28 21:48:40下载
- 积分:1