登录
首页 » matlab » Adaptive-CPSO-master

Adaptive-CPSO-master

于 2020-05-11 发布
0 126
下载积分: 1 下载次数: 1

代码说明:

说明:  改进的粒子群优化,有效解决全局最优,实现化工过程的温度优化(Improved particle swarm optimization to effectively solve global optimization)

文件列表:

Adaptive-CPSO-master, 0 , 2016-04-27
Adaptive-CPSO-master\.gitattributes, 378 , 2016-04-27
Adaptive-CPSO-master\.gitignore, 649 , 2016-04-27
Adaptive-CPSO-master\CEC2005, 0 , 2016-04-27
Adaptive-CPSO-master\CEC2005\A1.m, 6794 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ACPSO.m, 6994 , 2016-04-27
Adaptive-CPSO-master\CEC2005\EF8F2_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\README.txt, 5303 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\automataActSel.m, 347 , 2016-04-27
Adaptive-CPSO-master\CEC2005\automataProbUp.m, 636 , 2016-04-27
Adaptive-CPSO-master\CEC2005\b.m, 86 , 2016-04-27
Adaptive-CPSO-master\CEC2005\benchmark_func.m, 27327 , 2016-04-27
Adaptive-CPSO-master\CEC2005\body.m, 1681 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\exemplar.m, 1042 , 2016-04-27
Adaptive-CPSO-master\CEC2005\fbias_data.mat, 248 , 2016-04-27
Adaptive-CPSO-master\CEC2005\func_plot.m, 1716 , 2016-04-27
Adaptive-CPSO-master\CEC2005\global_optima.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\high_cond_elliptic_rot_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D2.mat, 7592 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\pso.m, 3030 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rosenbrock_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_102_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_206_data.mat, 21040 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_213_data.mat, 41104 , 2016-04-27
Adaptive-CPSO-master\CEC2005\sphere_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\table.asv, 75 , 2016-04-27
Adaptive-CPSO-master\CEC2005\table.m, 111 , 2016-04-27
Adaptive-CPSO-master\CEC2005\test.m, 5168 , 2016-04-27
Adaptive-CPSO-master\CEC2005\test_data.mat, 104928 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\Readme.md, 1996 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc, 0 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\ACPSO.m, 6432 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\automataActSel.m, 347 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\automataProbUp.m, 596 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\b.m, 86 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body.m, 1654 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body1.m, 466 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body2.m, 469 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\clpso.m, 3411 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\exemplar.m, 1042 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\fit_func.m, 2226 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\icpsoh.m, 8487 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\learn.m, 6505 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\orthm_generator.m, 305 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\rcpsoh.m, 9065 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\splitswarm.m, 1256 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\test.m, 1046 , 2016-04-27
Adaptive-CPSO-master\TEC2006_StandardFunc, 0 , 2016-04-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Hindmarsh_Rose
    用matlab实现了对Hindmarsh-Rose神经元模型各个参数的仿真。包括了HR神经元模型和主程序,下载即可执行。(Hindmarsh-Rose neuron is analyzed with matlab)
    2020-09-21 10:17:53下载
    积分:1
  • 200703261647
    神经网络PID仿真程序,直接导入MATLAB就可以运行(PID neural network simulation program directly into MATLAB on the run)
    2007-03-26 16:46:07下载
    积分:1
  • mohukongzhicontrol
    一个入门级别的模糊控制simulink仿真模型,感兴趣的同学可以下载学习(Fuzzy control of an entry-level the simulink simulation models, and interested students can download learning)
    2012-11-01 20:10:43下载
    积分:1
  • AutoRegression
    AR自回归模型,主要介绍时间序列分析中重要的一个模型。(AR autoregression model, time series analysis introduces an important model.)
    2014-01-28 10:07:30下载
    积分:1
  • sourcecode
    通过对OFDM信号的CCDF曲线进行分析,得出了联合哈特莱变换和限幅算法降低OFDM信号峰均比的方法确实降低了OFDM信号的PAPR值(through the analysis of CCDF curve of OFDM signal, it is true to reduce the PAPR value of OFDM signal by use the method of the United Hart transform and clipping algorithm for PAPR reduction)
    2014-03-26 21:00:41下载
    积分:1
  • I_MFAC
    基于MFAC改进的MFAC,添加了神经网络扰动进行补偿的IMFAC,增强了原始MFAC控制算法的鲁棒性(Based on MFAC s improved MFAC, the IMFAC, which has been added to compensate for neural network disturbances, enhances the robustness of the original MFAC control algorithm)
    2021-02-01 22:20:00下载
    积分:1
  • 拉格郎日
    极有用的数据处理程序,方便处理实验数据,并取得数学表达式(matlab)(very useful data processing procedures, facilitate the processing of experimental data and mathematical expression made (Matlab))
    2005-03-31 11:24:48下载
    积分:1
  • fit_ML_log_normal
    fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!. Given the samples of a laplace distribution, the PDF parameter is found fits data to the probability of the form: p(x) = 1/(2*b)*exp(-abs(x-u)/b) with parameters: u,b format: result = fit_ML_laplace( x,hAx ) input: x - vector, samples with laplace distribution to be parameterized hAx - handle of an axis, on which the fitted distribution is plotted if h is given empty, a figure is created. output: result - structure with the fields u,b - fitted parameters CRB_b - Cram?r-Rao Bound for the estimator value RMS - RMS error of the estimation type - ML
    2011-02-09 19:07:30下载
    积分:1
  • matlab_home
    说明:  matlab作业练习,大家研究下,初学者会受益的(matlab operating practice, we study, the beginner will benefit)
    2011-02-23 23:15:49下载
    积分:1
  • K_mean_clustering
    this code is about k mean clustering in Matlab
    2013-03-18 20:59:14下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载