登录
首页 » matlab » Adaptive-CPSO-master

Adaptive-CPSO-master

于 2020-05-11 发布
0 139
下载积分: 1 下载次数: 1

代码说明:

说明:  改进的粒子群优化,有效解决全局最优,实现化工过程的温度优化(Improved particle swarm optimization to effectively solve global optimization)

文件列表:

Adaptive-CPSO-master, 0 , 2016-04-27
Adaptive-CPSO-master\.gitattributes, 378 , 2016-04-27
Adaptive-CPSO-master\.gitignore, 649 , 2016-04-27
Adaptive-CPSO-master\CEC2005, 0 , 2016-04-27
Adaptive-CPSO-master\CEC2005\A1.m, 6794 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ACPSO.m, 6994 , 2016-04-27
Adaptive-CPSO-master\CEC2005\EF8F2_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\E_ScafferF6_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\README.txt, 5303 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\ackley_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\automataActSel.m, 347 , 2016-04-27
Adaptive-CPSO-master\CEC2005\automataProbUp.m, 636 , 2016-04-27
Adaptive-CPSO-master\CEC2005\b.m, 86 , 2016-04-27
Adaptive-CPSO-master\CEC2005\benchmark_func.m, 27327 , 2016-04-27
Adaptive-CPSO-master\CEC2005\body.m, 1681 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\elliptic_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\exemplar.m, 1042 , 2016-04-27
Adaptive-CPSO-master\CEC2005\fbias_data.mat, 248 , 2016-04-27
Adaptive-CPSO-master\CEC2005\func_plot.m, 1716 , 2016-04-27
Adaptive-CPSO-master\CEC2005\global_optima.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\griewank_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\high_cond_elliptic_rot_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D2.mat, 7592 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func1_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func2_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_HM_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func3_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D10.mat, 8792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D2.mat, 1112 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D30.mat, 72792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_M_D50.mat, 200792 , 2016-04-27
Adaptive-CPSO-master\CEC2005\hybrid_func4_data.mat, 8184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\pso.m, 3030 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rastrigin_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\rosenbrock_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_102_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_206_data.mat, 21040 , 2016-04-27
Adaptive-CPSO-master\CEC2005\schwefel_213_data.mat, 41104 , 2016-04-27
Adaptive-CPSO-master\CEC2005\sphere_func_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\table.asv, 75 , 2016-04-27
Adaptive-CPSO-master\CEC2005\table.m, 111 , 2016-04-27
Adaptive-CPSO-master\CEC2005\test.m, 5168 , 2016-04-27
Adaptive-CPSO-master\CEC2005\test_data.mat, 104928 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D10.mat, 984 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D2.mat, 216 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D30.mat, 7384 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_M_D50.mat, 20184 , 2016-04-27
Adaptive-CPSO-master\CEC2005\weierstrass_data.mat, 984 , 2016-04-27
Adaptive-CPSO-master\Readme.md, 1996 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc, 0 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\ACPSO.m, 6432 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\automataActSel.m, 347 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\automataProbUp.m, 596 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\b.m, 86 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body.m, 1654 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body1.m, 466 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\body2.m, 469 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\clpso.m, 3411 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\exemplar.m, 1042 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\fit_func.m, 2226 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\icpsoh.m, 8487 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\learn.m, 6505 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\orthm_generator.m, 305 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\rcpsoh.m, 9065 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\splitswarm.m, 1256 , 2016-04-27
Adaptive-CPSO-master\TEC2006_RotatedFunc\test.m, 1046 , 2016-04-27
Adaptive-CPSO-master\TEC2006_StandardFunc, 0 , 2016-04-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • medfilt2
    中值滤波 降噪 可有效滤除高斯和椒盐噪声 保持图像边缘 (medfilt2)
    2010-09-28 20:50:25下载
    积分:1
  • matlab
    这是一个关于MATLAB实例的讲解以及工具箱的使用,对初学者很有帮助.(This is a lecture on the MATLAB examples, as well as the use of the toolbox, useful for beginners.)
    2008-05-03 13:30:09下载
    积分:1
  • fdeconv
    说明:  快速反卷积。计算速度很快,必要的时候需要手动更改m文件里的fft点数以改变计算精度。很好的代码。(Rapid deconvolution. Computing speed very quickly, when necessary to manually change the m file points to change the fft calculation accuracy. Very good code.)
    2008-09-02 14:02:23下载
    积分:1
  • randomforest-matlab
    matlab随机森林,可用于图像融合,matlab在tutorial_ClassRF教程.(A tutorial for matlab now in tutorial_ClassRF.m)
    2015-03-11 10:44:50下载
    积分:1
  • Distribution-network-reconfiguration
    这是应用于配电网重构的改进二进制粒子群算法,能够取得比较理想的效果(Distribution network reconfiguration )
    2021-03-05 15:39:32下载
    积分:1
  • EE_497_4_Norelay
    This shows that relay power is an important criterion which decides the gain we get from simple relaying as compared to direct transmission.
    2011-10-23 22:29:22下载
    积分:1
  • matlab---to-work-harder
    很好的学习matlab的资料,很精细,适合于初学者,有助于突飞猛进(Good learning matlab, very fine, suitable for beginners, contribute to the rapid)
    2013-04-12 10:18:23下载
    积分:1
  • FLD_based-Face-Recognition-System_v2
    FLD_based Face Recognition System_v22帮助大家学习LDA算法,解决线性可分的问题(FLD_based Face Recognition System_v2)
    2013-11-18 21:25:52下载
    积分:1
  • LFM_5filter
    对海底杂波进行滤波,滤除其混响部分,原信号为LFM信号(The seabed clutter filtering, filtering part of its reverberation, the original signal is LFM signal)
    2013-06-18 17:25:37下载
    积分:1
  • LBP
    LBP算子,用matlab实现,在本机上成功运行。(LBP operator, using matlab to achieve, on this machine to run successfully.)
    2021-02-05 15:29:57下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载