登录
首页 » matlab » asympPDC-master

asympPDC-master

于 2021-05-14 发布
0 213
下载积分: 1 下载次数: 8

代码说明:

说明:  偏定向相干算法的matlab程序,部分定向相干,分析相干性因果性(Matlab program of partial directional coherence algorithm, analysis of coherence causality)

文件列表:

asympPDC-master, 0 , 2017-04-27
asympPDC-master\LICENSE, 35141 , 2017-04-27
asympPDC-master\analysis_template.m, 16125 , 2017-04-27
asympPDC-master\examples, 0 , 2017-04-27
asympPDC-master\examples\andrews_herzberg.m, 11619 , 2017-04-27
asympPDC-master\examples\andrews_herzberg_1p_5p.m, 9456 , 2017-04-27
asympPDC-master\examples\baccala2001a_ex3.m, 6243 , 2017-04-27
asympPDC-master\examples\baccala2001a_ex4.m, 4560 , 2017-04-27
asympPDC-master\examples\baccala2001a_ex4_dtf_special.m, 5378 , 2017-04-27
asympPDC-master\examples\baccala2001a_ex5.m, 6531 , 2017-04-27
asympPDC-master\examples\baccala2001b_model1_feedback.m, 7726 , 2017-04-27
asympPDC-master\examples\baccala2001b_model2.m, 6159 , 2017-04-27
asympPDC-master\examples\baccala2001b_model2_variant.m, 6007 , 2017-04-27
asympPDC-master\examples\eeg_p3p4.mat, 141589 , 2017-04-27
asympPDC-master\examples\eegplot2.m, 1113 , 2017-04-27
asympPDC-master\examples\eggplot_test.m, 796 , 2017-04-27
asympPDC-master\examples\eichler2006_ex1.m, 5005 , 2017-04-27
asympPDC-master\examples\eichler2006_ex2.m, 4385 , 2017-04-27
asympPDC-master\examples\equations, 0 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001a_ex3.m, 2023 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001a_ex4.m, 2097 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001a_ex5.m, 2164 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001b_model1_feedback.m, 2194 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001b_model1_feedback_milano.m, 2230 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001b_model2.m, 1981 , 2017-04-27
asympPDC-master\examples\equations\fbaccala2001b_model2_variant.m, 2140 , 2017-04-27
asympPDC-master\examples\equations\feichler2006_ex1.m, 2449 , 2017-04-27
asympPDC-master\examples\equations\feichler2006_ex2.m, 2370 , 2017-04-27
asympPDC-master\examples\equations\fgourevitch2006_model2.m, 1623 , 2017-04-27
asympPDC-master\examples\equations\fguo2008_linear.m, 3925 , 2017-04-27
asympPDC-master\examples\equations\fschelter2005.m, 2032 , 2017-04-27
asympPDC-master\examples\equations\fschelter2006.m, 2363 , 2017-04-27
asympPDC-master\examples\equations\fschelter2009_vap1.m, 2021 , 2017-04-27
asympPDC-master\examples\equations\fschelter2009_vap2.m, 1964 , 2017-04-27
asympPDC-master\examples\equations\fwinterhalder2005_variant.m, 1658 , 2017-04-27
asympPDC-master\examples\gourevitch2006_model2.m, 7523 , 2017-04-27
asympPDC-master\examples\guo2008_linear.m, 6992 , 2017-04-27
asympPDC-master\examples\run_all_examples.m, 5292 , 2017-04-27
asympPDC-master\examples\schelter2005.m, 7124 , 2017-04-27
asympPDC-master\examples\schelter2006.m, 5532 , 2017-04-27
asympPDC-master\examples\schelter2006_state.mat, 117 , 2017-04-27
asympPDC-master\examples\schelter2009_vap1.m, 4432 , 2017-04-27
asympPDC-master\examples\schelter2009_vap2.m, 4204 , 2017-04-27
asympPDC-master\examples\winterhalder2005_variant.m, 9115 , 2017-04-27
asympPDC-master\routines, 0 , 2017-04-27
asympPDC-master\routines\A_to_f.m, 1460 , 2017-04-27
asympPDC-master\routines\ar_data.m, 2366 , 2017-04-27
asympPDC-master\routines\arfitcaps.m, 2119 , 2017-04-27
asympPDC-master\routines\asymp_dtf.m, 14359 , 2017-04-27
asympPDC-master\routines\asymp_dtf_special.m, 14430 , 2017-04-27
asympPDC-master\routines\asymp_dtf_theo.m, 13587 , 2017-04-27
asympPDC-master\routines\asymp_pdc.m, 13348 , 2017-04-27
asympPDC-master\routines\asymp_pdc_theo.m, 12525 , 2017-04-27
asympPDC-master\routines\auto_theo.m, 392 , 2017-04-27
asympPDC-master\routines\cmlsm.m, 1256 , 2017-04-27
asympPDC-master\routines\coh_alg.m, 315 , 2017-04-27
asympPDC-master\routines\dtf_alg.m, 4249 , 2017-04-27
asympPDC-master\routines\dtf_alg_A.m, 2876 , 2017-04-27
asympPDC-master\routines\dtf_alg_special.m, 4281 , 2017-04-27
asympPDC-master\routines\dtf_analysis.m, 713 , 2017-04-27
asympPDC-master\routines\gct_alg.m, 8455 , 2017-04-27
asympPDC-master\routines\getCij.m, 482 , 2017-04-27
asympPDC-master\routines\mcarns.m, 2982 , 2017-04-27
asympPDC-master\routines\mcarvm.m, 3324 , 2017-04-27
asympPDC-master\routines\measure.m, 370 , 2017-04-27
asympPDC-master\routines\mvar.m, 4791 , 2017-04-27
asympPDC-master\routines\mvarresidue.m, 2899 , 2017-04-27
asympPDC-master\routines\pdc_alg.m, 4341 , 2017-04-27
asympPDC-master\routines\pdc_alg_A.m, 1337 , 2017-04-27
asympPDC-master\routines\pvalues_xplot.m, 6251 , 2017-04-27
asympPDC-master\routines\qqplots.m, 3760 , 2017-04-27
asympPDC-master\routines\qqplots2.m, 4806 , 2017-04-27
asympPDC-master\routines\qqplots3.m, 5812 , 2017-04-27
asympPDC-master\routines\ss_alg.m, 467 , 2017-04-27
asympPDC-master\routines\standardize.m, 130 , 2017-04-27
asympPDC-master\routines\tmp, 0 , 2017-04-27
asympPDC-master\routines\tmp\asymp_dtf.m, 17761 , 2017-04-27
asympPDC-master\routines\tmp\asymp_pdc.m, 17001 , 2017-04-27
asympPDC-master\routines\tmp\xplot.m, 36926 , 2017-04-27
asympPDC-master\routines\xplot.m, 33262 , 2017-04-27
asympPDC-master\routines\xplot_title.m, 952 , 2017-04-27
asympPDC-master\setpathasymppdc.m, 1178 , 2017-04-27
asympPDC-master\setpathasymppdc_ubuntuDELL.m, 1256 , 2017-04-27
asympPDC-master\supporting, 0 , 2017-04-27
asympPDC-master\supporting\arfit, 0 , 2017-04-27
asympPDC-master\supporting\arfit\CHANGES, 3076 , 2017-04-27
asympPDC-master\supporting\arfit\acf.m, 2739 , 2017-04-27
asympPDC-master\supporting\arfit\adjph.m, 1094 , 2017-04-27
asympPDC-master\supporting\arfit\arconf.m, 2251 , 2017-04-27
asympPDC-master\supporting\arfit\ardem.m, 8952 , 2017-04-27
asympPDC-master\supporting\arfit\arfit.m, 5704 , 2017-04-27
asympPDC-master\supporting\arfit\armode.m, 7103 , 2017-04-27
asympPDC-master\supporting\arfit\arord.m, 3167 , 2017-04-27
asympPDC-master\supporting\arfit\arqr.m, 2739 , 2017-04-27
asympPDC-master\supporting\arfit\arres.m, 2944 , 2017-04-27
asympPDC-master\supporting\arfit\arsim.m, 3370 , 2017-04-27
asympPDC-master\supporting\arfit\index.html, 8208 , 2017-04-27
asympPDC-master\supporting\arfit\tquant.m, 1829 , 2017-04-27
asympPDC-master\supporting\boundedline, 0 , 2017-04-27
asympPDC-master\supporting\boundedline\boundedline.m, 10726 , 2017-04-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • rs
    contains reeedsolomon code for wireless complete systm
    2010-08-16 18:11:33下载
    积分:1
  • mimo
    一种基于MIMO的能够智能天线选择算法 MATLAB语言编写(A conpute of channel selection based on MIMO)
    2011-04-30 16:21:50下载
    积分:1
  • 665-965-1-PB
    STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES
    2014-11-09 02:53:12下载
    积分:1
  • dss_1-0.tar
    国外的一个非常不错的图像去噪matlab代码(Abroad, a very good image denoising matlab code)
    2009-12-16 20:59:28下载
    积分:1
  • dds
    说明:  用MATLAB观察DDS输出波形 用MATLAB观察DDS输出波形 (Using MATLAB to observe DDS output waveform using MATLAB observation DDS output waveform)
    2008-09-05 15:58:25下载
    积分:1
  • simulate
    基于ZigBee的室内视频定位跟踪的指纹定位算法仿真,给出仿真结论(Simulation results based on ZigBee for indoor video location and tracking of fingerprint localization algorithm simulation)
    2021-03-24 08:19:14下载
    积分:1
  • emd综合
    说明:  经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。(Empirical mode decomposition (EMD) method is considered as a major breakthrough in linear and steady-state spectrum analysis based on Fourier transform since 2000. This method decomposes signals according to the time scale characteristics of the data itself, without setting any basis function in advance. This is essentially different from Fourier decomposition and wavelet decomposition based on prior harmonic basis function and wavelet basis function.)
    2020-10-22 12:01:28下载
    积分:1
  • 19thmonthlymeeting
    Maternal neonatal child health programme activities in matlab chandpur
    2010-01-24 18:53:27下载
    积分:1
  • yuyinSB
    基于matlab实现语音识别的代码~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(Matlab speech recognition-based code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)
    2015-04-16 18:23:51下载
    积分:1
  • uc006_download
    这个是用GAMS写的,求解电力系统机组组合问题的代码。GMAS的代码哦,可以和MATLAB进行调用。(This is written with the GAMS, solving the code power system unit commitment. GMAS code Oh, you can call and MATLAB.)
    2020-11-10 21:09:45下载
    积分:1
  • 696516资源总数
  • 106425会员总数
  • 12今日下载