-
中国7大地理分区
说明: 中国7大地理分区shp文件,东北、华北、华东、华中、华南、西南、西北七大经济协作区(Shp files of seven geographical regions in China)
- 2021-03-28 03:59:11下载
- 积分:1
-
timeanlysise
基于小波变换以及快速傅立叶变换的时频分析程序,很实用(cwt fft)
- 2016-03-01 17:51:12下载
- 积分:1
-
JABVNYZ247
Dijkstra’s算法的实现,还有具体的实验报告,欢迎下载()
- 2018-05-26 13:38:19下载
- 积分:1
-
release
眼球追踪算法 matlab实现 内含说明pdf(eyetracking m file with introduction)
- 2020-09-28 10:57:45下载
- 积分:1
-
Desktop
说明: 内有matlab的gui编程,界面设计,图像转灰度图,边缘检测(There are Matlab GUI programming, interface design, image to grayscale, edge detection)
- 2021-03-22 22:49:16下载
- 积分:1
-
nsct_fusion
nsct——fusious图像融合系统代码nsct——fusious图像融合系统代码nsct——fusious图像融合系统代码(nsct- fusious image fusion system code nsct- fusious image fusion system code nsct- fusious image fusion system code)
- 2014-05-04 13:18:12下载
- 积分:1
-
edge_detect
本代码为Canny检测算法的实现,功能为对图象边缘确定与提取(The code for the the Canny detection algorithm, determine and extraction the edge of the image)
- 2013-04-29 11:02:33下载
- 积分:1
-
TERCOM
完整的仿真了地形匹配中的TERCOM算法,包含了地形数据。(A complete simulation of terrain matching in the TERCOM algorithm, including terrain data.)
- 2021-03-12 15:09:25下载
- 积分:1
-
flexsim模型
几种flexsim的模型(飞机场、公交线路、订单产生、农场)(Several models of Flexsim)
- 2020-11-23 23:19:34下载
- 积分:1
-
PCA
主成分分析 ( Principal Component Analysis , PCA )或者主元分析。是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n ′ m 的数据矩阵, n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。(Principal component analysis (Principal Component Analysis, PCA) or PCA. Is a statistical method to grasp the principal contradiction of things, it can be resolved diverse things out the main factors, revealing the essence of things, simplifying complex problems. The purpose of calculating the main component of high-dimensional data is projected to a lower dimensional space. Given n variables of m observations, forming an n ' m of the data matrix, n is usually large. For a complex matters described by several variables, it is difficult to know, so if you can grab something to focus on key aspects of analysis? If the main aspects of things just reflected on several key variables, we only need to separate out these few variables, for detailed analysis. However, in general, does not directly identify this critical variables. Then we can represent the major aspects of things with a linear combination of the original variables, PCA is one such analysis.)
- 2021-01-28 21:48:40下载
- 积分:1